Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 926913, 7 pages
http://dx.doi.org/10.1155/2014/926913
Research Article

Robust Optimization for Time-Cost Tradeoff Problem in Construction Projects

School of Tourism and Urban Management, Jiangxi University of Finance & Economics, Nanchang 330013, China

Received 7 May 2014; Accepted 19 June 2014; Published 4 August 2014

Academic Editor: Hamid Karimi

Copyright © 2014 Ming Li and Guangdong Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Zhang, Q. Zhang, and G. Wu, “Interorganizational knowledge division decision model based on cooperative innovation of supply chain system,” Abstract and Applied Analysis, vol. 2014, Article ID 418104, 9 pages, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  2. S. Yin, S. X. Ding, A. H. A. Sari, and H. Hao, “Data-driven monitoring for stochastic systems and its application on batch process,” International Journal of Systems Science, vol. 44, no. 7, pp. 1366–1376, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  3. A. Azaron and R. Tavakkoli-Moghaddam, “A multi-objective resource allocation problem in dynamic PERT networks,” Applied Mathematics and Computation, vol. 181, no. 1, pp. 163–174, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. M. E. Bruni, P. Beraldi, F. Guerriero, and E. Pinto, “A heuristic approach for resource constrained project scheduling with uncertain activity durations,” Computers and Operations Research, vol. 38, no. 9, pp. 1305–1318, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. C. W. Wu, K. N. Brown, and J. C. Beck, “Scheduling with uncertain durations: modeling β-robust scheduling with constraints,” Computers and Operations Research, vol. 36, no. 8, pp. 2348–2356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Klerides and E. Hadjiconstantinou, “A decomposition-based stochastic programming approach for the project scheduling problem under time/cost trade-off settings and uncertain durations,” Computers and Operations Research, vol. 37, no. 12, pp. 2131–2140, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. W. Wiesemann, D. Kuhn, and B. Rustem, “Maximizing the net present value of a project under uncertainty,” European Journal of Operational Research, vol. 202, no. 2, pp. 356–367, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. Y. Shou and W. Wang, “Project scheduling strategy genetic algorithm based on robust optimization model,” Journal of Industrial Engineering and Engineering Management, vol. 23, no. 4, pp. 148–152, 2009. View at Google Scholar
  9. J. Wang, “Uncertainty of the time and cost optimization schedule,” Systems Engineering-theory & Practice, vol. 19, no. 1, pp. 93–98, 2002. View at Google Scholar
  10. S. Yin, H. Luo, and S. Ding, “Real-time implementation of fault-tolerant control systems with performance optimization,” IEEE Transactions on Industrial Electronics, vol. 64, no. 5, pp. 2402–2411, 2014. View at Google Scholar
  11. S. Yin, G. Wang, and H. Karimi, “Data-driven design of robust fault detection system for wind turbines,” Mechatronics, vol. 24, no. 4, pp. 298–306, 2014. View at Publisher · View at Google Scholar
  12. S. L. Janak, X. Lin, and C. A. Floudas, “A new robust optimization approach for scheduling under uncertainty. II. Uncertainty with known probability distribution,” Computers and Chemical Engineering, vol. 31, no. 3, pp. 171–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Ö. Hazir, E. Erel, and Y. Gnalay, “Robust optimization models for the discrete time/cost trade-off problem,” International Journal of Production Economics, vol. 130, no. 1, pp. 87–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Yin, X. Yang, and H. R. Karimi, “Data-driven adaptive observer for fault diagnosis,” Mathematical Problems in Engineering, vol. 2012, Article ID 832836, 21 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  15. W. Zhang, Q. Zhang, and H. Karimi, “Seeking the important nodes of complex networks in product R&D team based on fuzzy AHP and TOPSIS,” Mathematical Problems in Engineering, vol. 2013, Article ID 327592, 9 pages, 2013. View at Publisher · View at Google Scholar
  16. D. Prabuddha, E. James Dunne, J. B. Ghosh, and C. E. Wells, “The discrete time-cost tradeoff problem revisited,” European Journal of Operational Research, vol. 81, no. 2, pp. 225–238, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” Journal of Process Control, vol. 22, no. 9, pp. 1567–1581, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Gunawan and S. Azarm, “Multi-objective robust optimization using a sensitivity region concept,” Structural and Multidisciplinary Optimization, vol. 29, no. 3, pp. 50–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. W. M. Wang, Y. H. Peng, J. Hu, and Z. M. Cao, “Collaborative robust optimization under uncertainty based on generalized dynamic constraints network,” Structural and Multidisciplinary Optimization, vol. 38, no. 2, pp. 159–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. G. Bekele and J. W. Nicklow, “Multi-objective automatic calibration of SWAT using NSGA-II,” Journal of Hydrology, vol. 341, no. 3-4, pp. 165–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Murugan, S. Kannan, and S. Baskar, “NSGA-II algorithm for multi-objective generation expansion planning problem,” Electric Power Systems Research, vol. 79, no. 4, pp. 622–628, 2009. View at Publisher · View at Google Scholar · View at Scopus