Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2015 (2015), Article ID 823562, 14 pages
http://dx.doi.org/10.1155/2015/823562
Research Article

A Data Mining Approach for Visual and Analytical Identification of Neurorehabilitation Ranges in Traumatic Brain Injury Cognitive Rehabilitation

1Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
2Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
3Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
4Departament d’Estadística i Investigació Operativa, Universitat Politècnica de Catalunya (BarcelonaTech), Jordi Girona 1-3, 08034 Barcelona, Spain

Received 2 January 2015; Accepted 23 February 2015

Academic Editor: Francisco Solis

Copyright © 2015 Alejandro García-Rudolph and Karina Gibert. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Roozenbeek, A. I. R. Maas, and D. K. Menon, “Changing patterns in the epidemiology of traumatic brain injury,” Nature Reviews Neurology, vol. 9, no. 4, pp. 231–236, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Langlois and R. W. Sattin, “Traumatic brain injury in the United States: research and programs of the Centers for Disease Control and Prevention (CDC),” Journal of Head Trauma Rehabilitation, vol. 20, no. 3, pp. 187–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. A. Tabish and N. Syed, “Traumatic brain injury: the neglected epidemic of modern society,” International Journal of Science and Research, vol. 3, no. 12, 2014. View at Google Scholar
  4. D. T. Stuss, G. Winocur, and I. H. Robertson, Cognitive Neuro-Rehabilitation: Evidence and Application, Cambridge University Press, Cambridge, UK, 2nd edition, 2008.
  5. B. A. Wilson, “La réadaption cognitive chez les cérébro-lésés,” in Neuropsychologie Clinique et Neurologie du Comportement, M. I. Botez, Ed., pp. 637–652, Les Presses de l'Université de Montreal, Montreal, Canada, 2nd edition, 1996. View at Google Scholar
  6. M. M. Sohlberg, Cognitive Rehabilitation. An interactive Neuropsychological Approach, 2001, edited by: C. A. Mateer.
  7. R. J. Nudo, “Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury,” Journal of Rehabilitation Medicine, no. 41, supplement, pp. 7–10, 2003. View at Google Scholar · View at Scopus
  8. J. R. Carey, W. K. Durfee, E. Bhatt et al., “Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke,” Neurorehabilitation and Neural Repair, vol. 21, no. 3, pp. 216–232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. L. Wolf, C. J. Winstein, J. P. Miller et al., “Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial,” Journal of the American Medical Association, vol. 296, no. 17, pp. 2095–2104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. K. English, S. L. Hillier, K. R. Stiller, and A. Warden-Flood, “Circuit class therapy versus individual physiotherapy sessions during inpatient stroke rehabilitation: a controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 8, pp. 955–963, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kuys, S. Brauer, and L. Ada, “Routine physiotherapy does not induce a cardiorespiratory training effect post-stroke, regardless of walking ability,” Physiotherapy Research International, vol. 11, no. 4, pp. 219–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. García-Rudolph and K. Gibert, “A data mining approach to identify cognitive NeuroRehabilitation Range in Traumatic Brain Injury patients,” Expert Systems with Applications, vol. 41, no. 11, pp. 5238–5251, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Naamad, D. T. Lee, and W.-L. Hsu, “On the maximum empty rectangle problem,” Discrete Applied Mathematics, vol. 8, no. 3, pp. 267–277, 1984. View at Publisher · View at Google Scholar · View at MathSciNet
  14. A. I. Rughani, T. S. M. Dumont, Z. Lu et al., “Use of an artificial neural network to predict head injury outcome,” Journal of Neurosurgery, vol. 113, no. 3, pp. 585–590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S.-Y. Ji, R. Smith, T. Huynh, and K. Najarian, “A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries,” BMC Medical Informatics and Decision Making, vol. 9, no. 1, article 2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. B. C. Pang, V. Kuralmani, R. Joshi et al., “Hybrid outcome prediction model for severe traumatic brain injury,” Journal of Neurotrauma, vol. 24, no. 1, pp. 136–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Rohling, M. E. Faust, B. Beverly, and G. Demakis, “Effectiveness of cognitive rehabilitation following acquired brain injury: a meta-analytic re-examination of cicerone et al.'s (2000, 2005) systematic reviews,” Neuropsychology, vol. 23, no. 1, pp. 20–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Whyte and T. Hart, “It's more than a black box; it's a Russian doll: defining rehabilitation treatments,” American Journal of Physical Medicine & Rehabilitation, vol. 82, no. 8, pp. 639–652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. D. Cicerone, D. M. Langenbahn, C. Braden et al., “Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008,” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 4, pp. 519–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Gibert and A. García-Rudolph, “Desarrollo de herramientas para evaluar el resultado de las tecnologías aplicadas al proceso rehabilitador Estudio a partir de dos modelos concretos: Lesión Medular y Daño Cerebral Adquirido,” in Posibilidades de Aplicación de Minería de Datos para el Descubrimiento de Conocimiento a Partir de la Práctica Clínica, Informes de Evaluación de Tecnologias Sanitarias, AATRM núm. 2006/11, Cap 6, Plan Nacional para el Sistema Nacional de Salud del Ministerio de Sanidad y Consumo, Madrid, Spain; Agència d’Avaluació de Tecnologia I Recerca Mèdiques, Barcelona, Spain, 2007. View at Google Scholar
  21. J. Serra, J. L. Arcos, A. Garcia-Rudolph, A. García-Molina, T. Roig, and J. M. Tormos, “Cognitive prognosis of acquired brain injury patients using machine learning techniques,” in Proceedings of the International Conference on Advanced Cognitive Technologies and Applications (COGNITIVE '13), pp. 108–113, IARIA, Valencia, Spain, 2013.
  22. A. Marcano-Cedeño, P. Chausa, A. García, C. Cáceres, J. M. Tormos, and E. J. Gómez, “Data mining applied to the cognitive rehabilitation of patients with acquired brain injury,” Expert Systems with Applications, vol. 40, no. 4, pp. 1054–1060, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Jagaroo, Neuroinformatics for Neuropsychologists, Springer, 1st edition, 2009.
  24. A. Dumitrescu and M. Jiang, “On the largest empty axis-parallel box amidst n points,” Algorithmica, vol. 66, no. 2, pp. 225–248, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  25. B. Chazelle, R. L. Drysdale, and D. T. Lee, “Computing the largest empty rectangle,” SIAM Journal on Computing, vol. 15, no. 1, pp. 300–315, 1986. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  26. A. Aggarwal and S. Suri, “Fast algorithms for computing the largest empty rectangle,” in Proceedings of the 3rd Annual Symposium on Computational Geometry, pp. 278–290, Waterloo, Canada, June 1987.
  27. M. McKenna, J. O'Rourke, and S. Suri, “Finding the largest rectangle in an orthogonal polygon,” in Proceedings of the 23rd Annual Allerton Conference on Communication, Control and Computing, pp. 486–495, Urbana Champaign, Ill, USA, October 1985. View at Scopus
  28. H. S. Baird, S. E. Jones, and S. J. Fortune, “Image segmentation by shape-directed covers,” in Proceedings of the 10th International Conference on Pattern Recognition, vol. 1, pp. 820–825, June 1990. View at Scopus
  29. J. Edmonds, J. Gryz, D. Liang, and R. J. Miller, “Mining for empty spaces in large data sets,” Theoretical Computer Science, vol. 296, no. 3, pp. 435–452, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  30. J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, and S. Sarvattomananda, “Recognizing the largest empty circle and axis-parallel rectangle in a desired location,” CoRR, abs/1004.0558v2, 2010.
  31. J. M. Tormos, A. Garcia-Molina, A. Garcia Rudolph, and T. Roig, “Information and communications technology in learning development and rehabilitation,” International Journal of Integrated Care, vol. 9, 2009. View at Google Scholar
  32. C. S. Green and D. Bavelier, “Action-video-game experience alters the spatial resolution of vision,” Psychological Science, vol. 18, no. 1, pp. 88–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. D. Lezak, Neuropsychological Assessment, Oxford University Press, New York, NY, USA, 3rd edition, 1995.
  34. L. J. Trettin, Executive functions following traumatic brain injury: the impact of depression upon performance [Ph.D. thesis], Pacific Graduate School of Psychology, 2007.