Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2015, Article ID 836312, 10 pages
http://dx.doi.org/10.1155/2015/836312
Research Article

Quantifying Poincare’s Continuation Method for Nonlinear Oscillators

Pontificia Universidad Javeriana, Cali 760031, Colombia

Received 16 June 2015; Accepted 5 August 2015

Academic Editor: Weinian Zhang

Copyright © 2015 Daniel Núñez and Andrés Rivera. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Gomis-Porqueras and À. Haro, “A geometric description of a macroeconomic model with a center manifold,” Journal of Economic Dynamics and Control, vol. 33, no. 6, pp. 1217–1235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Simó, “On the analytical and numerical approximation of invariant manifolds,” in Les Méthodes Modernes de la Mecánique Céleste, D. Benest and C. Froeschlé, Eds., Course Given at Goutelas, France, pp. 285–329, Editions Frontieres, Paris, France, 1989. View at Google Scholar
  3. W. Loud, Periodic Solutions of Perturbed Second-Order Autonomous Equation, Memoirs of the American Mathematical Society no. 47, American Mathematical Society, Providence, RI, USA, 1964.
  4. G. Hamel, “Über erzwungene Schwingungen bei endlichen Amplituden,” Mathematische Annalen, vol. 86, no. 1-2, pp. 1–13, 1922. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Núñez and P. J. Torres, “KAM dynamics and stabilization of a particle sliding over a periodically driven curve,” Applied Mathematics Letters, vol. 20, no. 6, pp. 610–615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Ortega, “A forced pendulum equation with many periodic solutions,” Rocky Mountain Journal of Mathematics, vol. 27, no. 3, pp. 861–876, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. J. Lei, X. Li, P. Yan, and M. Zhang, “Twist character of the least amplitude periodic solution of the forced pendulum,” SIAM Journal on Mathematical Analysis, vol. 35, no. 4, pp. 844–867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Mawhin, “Seventy-five years of global analysis around the forced pendulum equation,” in Proceedings of the Equadiff 9, Conference on Differential Equations and Their Applications, pp. 115–145, Brno, Czech Republic, August 1997.
  9. J. Leray and J. Schauder, “Topologie et quations fonctionnelles,” Annales Scientifiques de l'École Normale Supérieure, vol. 51, no. 3, pp. 45–78, 1934. View at Google Scholar
  10. J. Llibre and R. Ortega, “On the families of periodic orbits of the Sitnikov problem,” SIAM Journal on Applied Dynamical Systems, vol. 7, no. 2, pp. 561–576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Ortega and A. Rivera, “Global bifurcations from the center of mass in the Sitnikov problem,” Discrete and Continuous Dynamical Systems Series B, vol. 14, no. 2, pp. 719–732, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Krantz and H. Parks, The Implicit Function Theorem History, Theory and Applications, Birkhäuser, Boston, Mass, USA, 2002.
  13. E. Freire, A. Gasull, and A. Guillamon, “First derivative of the period function with applications,” Journal of Differential Equations, vol. 204, no. 1, pp. 139–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Ortega, “The twist coefficient of periodic solutions of a time-dependent Newton's equation,” Journal of Dynamics and Differential Equations, vol. 4, no. 4, pp. 651–665, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Sotomayor, Licões de Equacões Diferenciais Ordinárias, Proyecto Euclides No 11, Instituto de Matemática Pura e Aplicada (IMPA-CNPq), Rio de Janerio, Brasil, 1979.
  16. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, NY, USA, 1955. View at MathSciNet
  17. J. Möser, “On the invariant curves of area preserving mappings of an annulus,” Nachrichten der Akademie der Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse, vol. 2, pp. 1–20, 1962. View at Google Scholar
  18. R. Ortega, “Periodic solutions of a newtonian equation: stability by the third approximation,” Journal of Differential Equations, vol. 128, no. 2, pp. 491–518, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Zhang, “The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,” Journal of the London Mathematical Society, vol. 67, no. 1, pp. 137–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Núñez and P. J. Torres, “On the motion of an oscillator with a periodically time-varying mass,” Nonlinear Analysis: Real World Applications, vol. 10, no. 4, pp. 1976–1983, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  21. D. Núñez and P. J. Torres, “Stabilization by vertical vibrations,” Mathematical Methods in the Applied Sciences, vol. 32, no. 9, pp. 1118–1128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Hanßmann and C. Simó, “Dynamical stability of quasi-periodic response solutions in planar conservative systems,” Indagationes Mathematicae, vol. 23, no. 3, pp. 151–166, 2012. View at Publisher · View at Google Scholar · View at MathSciNet