Table of Contents Author Guidelines Submit a Manuscript
Advances in Agriculture
Volume 2014, Article ID 924948, 10 pages
http://dx.doi.org/10.1155/2014/924948
Research Article

MIKE BASIN Based Decision Support Tool for Water Sharing and Irrigation Management in Rangawan Command of India

1National Institute of Hydrology, WALMI Campus, Kolar Road, Bhopal, Madhya Pradesh 462016, India
2National Institute of Hydrology, Jal Vigyan Bhawan, Roorkee, Uttarakhand 247667, India
3Agriculture Technology Management Agency, Damoh, Madhya Pradesh 470661, India
4Jawaharlal Nehru Krishi Vishva Vidalaya, Jabalpur, Madhya Pradesh 482004, India

Received 4 April 2014; Revised 29 May 2014; Accepted 25 June 2014; Published 22 July 2014

Academic Editor: John S. Swanston

Copyright © 2014 R. K. Jaiswal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Oliveira and D. P. Loucks, “Operating rules for multireservoir systems,” Water Resources Research, vol. 33, no. 4, pp. 839–852, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Chang, L. Chen, and L. Chang, “Optimizing the reservoir operating rule curves by genetic algorithms,” Hydrological Processes, vol. 19, no. 11, pp. 2277–2289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. B. Paderson, H. Medson, and C. S. Kotner, “Real time optimization of dam releases using multi objectives, application to Orange-Fish-Sundays river basin South Africa,” in Proceedings of the 13th SANCIAHS Symposium, 2007.
  4. S. K. Jaiswal, M. K. Varma, and M. Gupta, “Planning for optimum use of water resources of MRP complex using MIKE BASIN,” Journal of Indian Water Resources Society, vol. 33, no. 1, pp. 15–22, 2013. View at Google Scholar
  5. D. L. Martin, D. G. Watts, and J. R. Gilley, “Model and production function for irrigation management,” Journal of Irrigation and Drainage Engineering, vol. 110, no. 2, pp. 149–164, 1984. View at Publisher · View at Google Scholar · View at Scopus
  6. R. W. Koch and R. L. Allen, “Decision support system for local water management,” Journal of Water Resources Planning & Management, vol. 112, no. 4, pp. 527–541, 1986. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Arumugam and S. Mohan, “Integrated decision support system for tank irrigation system operation,” Journal of Water Resources Planning and Management, vol. 123, no. 5, pp. 266–273, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. P. P. Mujumdar and T. S. V. Ramesh, “Real-time reservoir operation for irrigation,” Water Resources Research, vol. 33, no. 5, pp. 1157–1164, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Prajamwong, G. P. Merkley, and R. G. Allen, “Decision support model for irrigation water management,” Journal of Irrigation and Drainage Engineering, vol. 123, no. 2, pp. 106–113, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. D. P. Panigrahi and P. P. Mujumdar, “Reservoir operation modelling with fuzzy logic,” Water Resources Management, vol. 14, no. 2, pp. 89–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Manoli, G. Arampatzis, E. Pissias, D. Xenos, and D. Assimacopoulos, “Water demand and supply analysis using a spatial decision support system,” Global Nest, vol. 3, no. 3, pp. 199–209, 2001. View at Google Scholar
  12. A. Cancelliere, G. Giuliano, A. Ancarani, and G. Rossi, “A neural networks approach for deriving irrigation reservoir operating rules,” Water Resources Management, vol. 16, no. 1, pp. 71–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Reddy and D. N. Kumar, “Optimal reservoir operation using multi-objective evolutionary algorithm,” Water Resources Management, vol. 20, no. 6, pp. 861–878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Reddy and D. N. Kumar, “Optimal reservoir operation for irrigation of multiple crops using elitist-mutated particle swarm optimization,” Hydrological Sciences Journal, vol. 52, no. 4, pp. 686–701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. El-Mesiry, E. F. Abdallh, M. S. Gaballah, and S. A. Ouda, “Using yield-stress model in irrigation management for wheat grown under saline conditions,” Australian Journal of Basic and Applied Sciences, vol. 1, no. 4, pp. 600–609, 2007. View at Google Scholar
  16. T. Kim, J. Heo, D. Bae, and J. Kim, “Single-reservoir operating rules for a year using multiobjective genetic algorithm,” Journal of Hydroinformatics, vol. 10, no. 2, pp. 163–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Cañón, J. González, and J. Valdés, “Reservoir operation and water allocation to mitigate drought effects in crops: a multilevel optimization using the drought frequency index,” Journal of Water Resources Planning and Management, vol. 135, no. 6, pp. 458–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. F. F. Li, J. H. Wei, X. D. Fu, and X. Y. Wan, “An effective approach to long-term optimal reservoir operation of large scale reservoir system: case study of three Gorge system,” Water Resources Management, vol. 26, no. 12, pp. 4073–4090, 2012. View at Publisher · View at Google Scholar
  19. M. Hosseini, S. J. Mousavi, A. Ardeshir, and K. Behzadian, “Flood control operation of a multi-reservoir system using system dynamics-based emulation-optimization Model,” in International Conference on Flood Resilience, University of Exeter, Exeter, UK, September 2013.
  20. M. R. Nikoo, A. Karimi, and R. Kerachian, “Optimal long-term operation reservoir-river systems under hydrologic uncertainties: application of interval programming,” Water Resources Management, vol. 27, no. 11, pp. 3865–3883, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Wang and J. Liu, “Reservoir operation incorporating hedging rules and operational inflow forecast,” Water Resources Management, vol. 27, no. 5, pp. 1427–1438, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. A. B. Darriane and S. Sarain, “Application intelligent water drops algorithm in reservoir operation,” Water Resources Management, vol. 27, no. 14, pp. 4827–4843, 2013. View at Google Scholar
  23. M. Moghaddasi, S. Araghinejad, and S. Morid, “Water management of irrigation dams considering climatic variation: case study of Zagndeh-rud reservoir, Iran,” Water Resources Management, vol. 27, no. 6, pp. 1651–1660, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Ahmadi, O. B. Hadded, and M. A. Marino, “Extraction of flexible multi-objective real time reservoir operation rule,” Water Resources Management, vol. 28, no. 1, pp. 131–147, 2014. View at Google Scholar
  25. V. Rajasekaram and K. D. Nandalal, “Decision support system for reservoir water management conflict resolution,” Journal of Water Resources Planning and Management, vol. 131, no. 6, pp. 410–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. K. Goel, S. K. Jain, V. Kumar, and A. Sharma, “Models for water resources assessment and reservoir operation simulation in a multi-basin,” Jalvigyan Sameeksha, Roorkee India, vol. 19, pp. 73–88, 2004. View at Google Scholar
  27. S. Raut, K. S. S. Sarma, and D. K. Das, “Study of irrigation and crop water requirements and growth of two Rabi crops grown in a semi arid region using agrometeorology and remote sensing,” Journal of Indian Society of Remote Sensing, vol. 38, no. 2, pp. 321–331, 2010. View at Publisher · View at Google Scholar
  28. L. N. Sethi, D. N. Kumar, S. N. Panda, and B. C. Mal, “Optimal crop planning and conjunctive use of water resources in a coastal river basin,” Water Resources Management, vol. 16, no. 2, pp. 145–169, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. C. Yang, L. C. Chang, C. S. Chen, and M. S. Yeh, “Multi-objective planning for conjunctive use of surface and subsurface water using genetic algorithm and dynamics programming,” Water Resources Management, vol. 23, no. 3, pp. 417–437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. R. Safavi, F. Darzi, and M. A. Mariño, “Simulation-optimization modeling of conjunctive use of surface water and groundwater,” Water Resources Management, vol. 24, no. 10, pp. 1965–1988, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. DHI, MIKE BASIN-GIS-based Water Resource Modeling Package, 2009.
  32. M. K. Jha and A. Das Gupta, “Application of Mike Basin for water management strategies in a watershed,” Water International, vol. 28, no. 1, pp. 27–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. L. L. Ngo, H. Madsen, D. Rosbjerg, and C. B. Pedersen, “Implementation and comparison of reservoir operation strategies for the Hoa Binh reservoir, Vietnam using the Mike 11 model,” Water Resources Management, vol. 22, no. 4, pp. 457–472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. FAO, Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements, Irrigation and Drainage Paper No. 56, 1998, http://www.fao.org/nr/water/docs/CROPWAT8.0Example.pdf.