Table of Contents
Advances in Artificial Intelligence
Volume 2010, Article ID 124816, 10 pages
http://dx.doi.org/10.1155/2010/124816
Research Article

Evaluation of Data Quality and Drought Monitoring Capability of FY-3A MERSI Data

1School of Remote Sensing and Information Engineering, Wuhan University, Wuhan Hubei 430079, China
2Network & Information Center, Changjiang Water Resources Commission, Wuhan Hubei 430010, China
3Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province and KeyOpen Laboratory of Arid Climatic Change and Reducing Disaster of CMA, Institute of Arid Meteorology, Lanzhou Gansu 730020, China

Received 22 September 2009; Accepted 18 November 2009

Academic Editor: Djamel Bouchaffra

Copyright © 2010 Daxiang Xiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Wilhite and M. H. Glantz, “Understanding the drought phenomenon: the role of definitions,” Water International, vol. 10, no. 3, pp. 111–120, 1985. View at Google Scholar · View at Scopus
  2. R. Nemani, L. Pierce, S. Running, and S. Goward, “Developing satellite-derived estimates of surface moisture status,” Journal of Applied Meteorology, vol. 32, no. 3, pp. 548–557, 1993. View at Google Scholar · View at Scopus
  3. A. Volcani, A. Karnieli, and T. Svoray, “The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years,” Forest Ecology and Management, vol. 215, no. 1–3, pp. 239–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Tadesse, J. F. Brown, and M. J. Hayes, “A new approach for predicting drought-related vegetation stress: integrating satellite, climate, and biophysical data over the U.S. central plains,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 59, no. 4, pp. 244–253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. P. R. Bajgiran, A. A. Darvishsefat, A. Khalili, and M. F. Makhdoum, “Using AVHRR-based vegetation indices for drought monitoring in the Northwest of Iran,” Journal of Arid Environments, vol. 72, no. 6, pp. 1086–1096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. T. Jeyaseelan and F. N. Kogan, “Evaluation of GVI based indices for drought early warning in India,” in Disaster Forewarning Diagnostic Methods and Management, vol. 6412 of Proceedings of SPIE, pp. 4120–4120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Marshall and X. Zhou, “Drought detection in semi-arid regions using remote sensing of vegetation indices and drought indices,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS '04), vol. 3, pp. 1555–1558, September 2004. View at Scopus
  8. L. Liu, D. Xiang, X. Dong, and Z. Zhou, “Improvement of the drought monitoring model based on the cloud parameters method and remote sensing data,” in Proceedings of the 1st International Workshop on Knowledge Discovery and Data Mining (WKDD '08), pp. 293–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Mo, Z. Wang, H. Sun, L. Ma, and L. He, “Remote Sensing Monitoring of Farmland Drought Based on Vegetation Supply Water Index,” Journal of Nanjing Institute of Meteorology, vol. 29, no. 3, pp. 396–401, 2006. View at Google Scholar
  10. C. Naira, L. Robert, M. Ramata, and T. Marouane, “Surface soil moisture status over the Mackenzie River Basin using a temperature/vegetation index,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS '07), pp. 1846–1848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. N. R. Patel, R. Anapashsha, S. Kumar, S. K. Saha, and V. K. Dadhwal, “Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status,” International Journal of Remote Sensing, vol. 30, no. 1, pp. 23–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Li, S. Y. Mao, and W. Chen, “A new method of cloud detection in MODIS image,” in Proceedings of the 7th International Conference on Electronic Measurement and Instruments, vol. 7, pp. 281–285, 2005.
  13. G. Cai, MODIS data based thermal inertia and land surface temperature modeling and their applications in determination of soil moisture and heat exchange, doctoral dissertation, M.S. thesis, Institute of remote sensing applications Chinese academy of sciences, 2006.
  14. L. Liu, D. Xiang, Z. Zhou, and X. Dong, “Analyses the modification functions of the drought monitoring model based on the cloud parameters method,” in Proceedings of the 1st International Congress on Image and Signal Processing (CISP '08), vol. 4, pp. 687–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. C. Reed, J. F. Brown, D. VanderZee, T. R. Loveland, J. W. Merchant, and D. O. Ohlen, “Measuring phenological variability from satellite imagery,” Journal of Vegetation Science, vol. 5, no. 5, pp. 703–714, 1994. View at Google Scholar · View at Scopus
  16. S. Hamel, M. Garel, M. Festa-Bianchet, J.-M. Gaillard, and S. D. Côté, “Spring Normalized Difference Vegetation Index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates,” Journal of Applied Ecology, vol. 46, no. 3, pp. 582–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. T. Kerr and M. Ostrovsky, “From space to species: ecological applications for remote sensing,” Trends in Ecology & Evolution, vol. 18, no. 6, pp. 299–305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Julien and J. A. Sobrino, “The Yearly Land Cover Dynamics (YLCD) method: an analysis of global vegetation from NDVI and LST parameters,” Remote Sensing of Environment, vol. 113, no. 2, pp. 329–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Sandholt, K. Rasmussen, and J. Andersen, “A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status,” Remote Sensing of Environment, vol. 79, no. 2-3, pp. 213–224, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Qi, C. Wang, and Z. Niu, “Evaluating soil moisture states in China using the temperature/vegetation dryness index(TVDI),” Joutnal of Remote Sensing, vol. 15, pp. 420–427, 2003. View at Google Scholar
  21. W. Li and D. Li, “The universal cloud detection algorithm of MODIS data,” in Geoinformatics 2006: Remotely Sensed Data and Information, vol. 6419 of Proceedings of SPIE, p. 4190, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Li and H. Li, “Study on winter wheat drought monitoring by TVDI in Hebei Province,” in Remote Sensing and Modeling of Ecosystems for Sustainability III, vol. 6298 of Proceedings of SPIE, pp. 2981–2981, San Diego, Calif, USA, August 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Jin, Q. M. Qin, L. Zhu, P. Nan, and A. Ghulam, “TVDI based crop yield prediction model for stressed surfaces—a case study on Ningxia Huizu autonomous region of China,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS '08), pp. 4656–4658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Tong, K. Qiu, X. Li, and Z. Yang, “Radiometric cross-calibration of the FY1D/VIRR and EOS/MODIS in the visible and near-infrared spectral bands,” Journal of Remote Sensing, vol. 4, pp. 349–356, 2005. View at Google Scholar
  25. G.-K. Zhang, C. Chen, F. Xing, H.-Y. Zhang, and Y.-S. Zhao, “Spectral radiometric calibration research of Quick Bird digital image,” Spectroscopy and Spectral Analysis, vol. 28, no. 3, pp. 494–498, 2008. View at Google Scholar · View at Scopus
  26. Z. Zhang and G. He, “Radiometric calibration of Landsat 5 TM data,” Science and Technology Review, vol. 7, pp. 54–58, 2008. View at Google Scholar
  27. Z. M. Cheng, L. Lu, and X. M. Qiu, “Make use of the space projection method to carry on the geometric exact correction to the remote sensing picture,” Science Mosaic, vol. 10, pp. 103–105, 2005. View at Google Scholar
  28. F. Duan, L. Zhu, and L. Gao, “Realization and optimization of multi-projection transformation on remote sensing image,” Journal of Image and Graphics, vol. 5, pp. 608–610, 2005. View at Google Scholar
  29. D. C. Bamber, S. Mackin, and P. Palmer, “Cloud detection and height estimation through registration of disaster monitoring constellation imagery,” in Remote Sensing of Clouds and the Atmosphere XI, vol. 6362 of Proceedings of SPIE, pp. 448–457, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Cheng, X. Gu, L. Chen, T. Yu, and G. Tian, “Cloud detection based on the spectral, multi-angular, and polarized characteristics of cloud,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '08), pp. 3321–3324, Barcelona, Spain, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Wu and Q. Cheng, “Study on methods of cloud identification and data recovery for MODIS data,” in Remote Sensing of Clouds and the Atmosphere XII, vol. 6745 of Proceedings of SPIE, pp. 7450–7450, Florence, France, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Wang, Y. He, and H. Guan, “Application of support vector machines in cloud detection using EOS/MODIS,” in Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support, vol. 7088 of Proceedings of SPIE, p. 880, San Diego, Calif, USA, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Z.-H. Qin, M.-H. Zhang, A. Karnieli, and P. Berliner, “Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data,” Acta Geographica Sinica, vol. 56, no. 4, pp. 456–466, 2001. View at Google Scholar · View at Scopus
  34. D. M. Song, N. K. Hu, Y. L. Wu, and X. Y. Li, “The study on the ground surface parameters in Minqin Oasis in Gansu Province with using remote sensing data,” in Proceeding of the International Conference on Informational Technology and Environmental System Science, vol. 4, pp. 339–343, 2008.