Table of Contents
Advances in Andrology
Volume 2014, Article ID 140618, 20 pages
http://dx.doi.org/10.1155/2014/140618
Review Article

Advances in Stem Cell Therapy for Erectile Dysfunction

Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA

Received 21 November 2013; Accepted 20 January 2014; Published 12 March 2014

Academic Editor: Enzo Vicari

Copyright © 2014 Ching-Shwun Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. C. Panel, “Impotence,” NIH Consens Statement, vol. 10, pp. 1–33, 1992. View at Google Scholar
  2. B. A. Inman, J. L. St. Sauver, D. J. Jacobson et al., “A population-based, longitudinal study of erectile dysfunction and future coronary artery disease,” Mayo Clinic Proceedings, vol. 84, no. 2, pp. 109–113, 2009. View at Google Scholar · View at Scopus
  3. G. Jackson, N. Boon, I. Eardley et al., “Erectile dysfunction and coronary artery disease prediction: evidence-based guidance and consensus,” International Journal of Clinical Practice, vol. 64, no. 7, pp. 848–857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Chew, J. Finn, B. Stuckey et al., “Erectile dysfunction as a predictor for subsequent atherosclerotic cardiovascular events: findings from a linked-data study,” The Journal of Sexual Medicine, vol. 7, no. 1, pp. 192–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Dong, Y. Zhang, and L. Qin, “Erectile dysfunction and risk of cardiovascular disease: meta-analysis of prospective cohort studies,” Journal of the American College of Cardiology, vol. 58, no. 13, pp. 1378–1385, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Wagner, K. S. Fugl-Meyer, and A. R. Fugl-Meyer, “Impact of erectile dysfunction on quality of life: patient and partner perspectives,” International Journal of Impotence Research, vol. 12, supplement 4, pp. S144–S146, 2000. View at Google Scholar · View at Scopus
  7. J. J. Sánchez-Cruz, A. Cabrera-León, A. Martín-Morales, A. Fernández, R. Burgos, and J. Rejas, “Male erectile dysfunction and health-related quality of life,” European Urology, vol. 44, no. 2, pp. 245–253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Kushiro, A. Takahashi, F. Saito et al., “Erectile dysfunction and its influence on quality of life in patients with essential hypertension,” American Journal of Hypertension, vol. 18, no. 3, pp. 427–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. S. Sand, W. Fisher, R. Rosen, J. Heiman, and I. Eardley, “Erectile dysfunction and constructs of masculinity and quality of life in the multinational Men's Attitudes to Life Events and Sexuality (MALES) study,” The Journal of Sexual Medicine, vol. 5, no. 3, pp. 583–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. V. Fernandes, R. R. dos Santos, W. Soares et al., “The impact of erectile dysfunction on the quality of life of men undergoing hemodialysis and its association with depression,” The Journal of Sexual Medicine, vol. 7, no. 12, pp. 4003–4010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Avasthi, S. Grover, A. Bhansali et al., “Erectile dysfunction in diabetes mellitus contributes to poor quality of life,” International Review of Psychiatry, vol. 23, no. 1, pp. 93–99, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. I. A. Aytaç, J. B. McKinlay, and R. J. Krane, “The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences,” BJU International, vol. 84, no. 1, pp. 50–56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Melman and K. Davies, “Gene therapy for erectile dysfunction: what is the future?” Current Urology Reports, vol. 11, no. 6, pp. 421–426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. McCullough, J. H. Barada, A. Fawzy, A. T. Guay, and D. Hatzichristou, “Achieving treatment optimization with sildenafil citrate (Viagra) in patients with erectile dysfunction,” Urology, vol. 60, no. 2, pp. 28–38, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Kendirci and W. J. G. Hellstrom, “Current concepts in the management of erectile dysfunction in men with prostate cancer,” Clinical Prostate Cancer, vol. 3, no. 2, pp. 87–92, 2004. View at Google Scholar · View at Scopus
  16. V. Phé and M. Rouprêt, “Erectile dysfunction and diabetes: a review of the current evidence-based medicine and a synthesis of the main available therapies,” Diabetes and Metabolism, vol. 38, no. 1, pp. 1–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. T. F. Lue, “Erectile dysfunction,” The New England Journal of Medicine, vol. 342, no. 24, pp. 1802–1813, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Lin, X. Qiu, T. M. Fandel et al., “Improved penile histology by phalloidin stain: circular and longitudinal cavernous smooth muscles, dual-endothelium arteries, and erectile dysfunction-associated changes,” Urology, vol. 78, no. 4, pp. 970.e1–970.e8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Qiu, T. M. Fandel, G. Lin et al., “Cavernous smooth muscle hyperplasia in a rat model of hyperlipidaemia- associated erectile dysfunction,” BJU International, vol. 108, no. 11, pp. 1866–1872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Awad, B. Alsaid, T. Bessede, S. Droupy, and G. Benoît, “Evolution in the concept of erection anatomy,” Surgical and Radiologic Anatomy, vol. 33, no. 4, pp. 301–312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. W. G. Dail, D. Trujillo, D. de la Rosa, and G. Walton, “Autonomic innervation of reproductive organs: analysis of the neurons whose axons project in the main penile nerve in the pelvic plexus of the rat,” Anatomical Record, vol. 224, no. 1, pp. 94–101, 1989. View at Google Scholar · View at Scopus
  22. C. S. Lin, “Lue TF Cyclic nucleotide signaling in vascular and cavernous smooth muscle: aging-related changes,” in Advances in Cell Aging and Gerontology, E. Bittar, Ed., vol. 16, pp. 57–106, Elsevier, 2004. View at Google Scholar
  23. C. Lin, G. Lin, and T. F. Lue, “Cyclic nucleotide signaling in cavernous smooth muscle,” The Journal of Sexual Medicine, vol. 2, no. 4, pp. 478–491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Lin, Z. Xin, Z. Wang, G. Lin, and T. F. Lue, “Molecular Yin and Yang of erectile function and dysfunction,” Asian Journal of Andrology, vol. 10, no. 3, pp. 433–440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. J. Hurt, B. Musicki, M. A. Palese et al., “Akt-dependent phosphorylation of endothelial nitric-oxide synthase mediates penile erection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 4061–4066, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. J. Bivalacqua, M. F. Usta, H. C. Champion, P. J. Kadowitz, and W. J. G. Hellstrom, “Endothelial dysfunction in erectile dysfunction: role of the endothelium in erectile physiology and disease,” Journal of Andrology, vol. 24, pp. S17–S37, 2003. View at Google Scholar · View at Scopus
  27. A. L. Burnett, “Novel nitric oxide signaling mechanisms regulate the erectile response,” International Journal of Impotence Research, vol. 16, supplement 1, pp. S15–S19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Corona, L. Petrone, E. Mannucci et al., “Difficulties in achieving vs maintaining erection: organic, psychogenic and relational determinants,” International Journal of Impotence Research, vol. 17, no. 3, pp. 252–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Wessells, T. H. Teal, K. Engel et al., “Fluid shear stress-induced nitric oxide production in human cavernosal endothelial cells: inhibition by hyperglycaemia,” BJU International, vol. 97, no. 5, pp. 1047–1052, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Michel and O. Feron, “Nitric oxide synthases: which, where, how, and why?” The Journal of Clinical Investigation, vol. 100, no. 9, pp. 2146–2152, 1997. View at Google Scholar · View at Scopus
  31. C. Lin, A. Lau, E. Bakircioglu et al., “Analysis of neuronal nitric oxide synthase isoform expression and identification of human nNOS-μ,” Biochemical and Biophysical Research Communications, vol. 253, no. 2, pp. 388–394, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Ning, X. Qiu, L. Baine et al., “Effects of high glucose on human cavernous endothelial cells,” Urology, vol. 80, pp. 1162. e7–1162. e11, 2012. View at Google Scholar
  33. C. Lin, “Phosphodiesterase type 5 regulation in the penile corpora cavernosa,” The Journal of Sexual Medicine, vol. 6, supplement 3, pp. 203–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Lin, G. Lin, Z. Xin, and T. F. Lue, “Expression, distribution and regulation of phosphodiesterase 5,” Current Pharmaceutical Design, vol. 12, no. 27, pp. 3439–3457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Shamloul and H. Ghanem, “Erectile dysfunction,” The Lancet, vol. 381, pp. 153–165, 2013. View at Google Scholar
  36. A. A. Carvalheira, N. M. Pereira, J. Maroco et al., “Dropout in the treatment of erectile dysfunction with PDE5: a study on predictors and a qualitative analysis of reasons for discontinuation,” The Journal of Sexual Medicine, vol. 9, pp. 2361–2369, 2012. View at Google Scholar
  37. National Diabetes Statistics, National Diabetes Information Clearinghouse, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 2011, http://diabetes.niddk.nih.gov/dm/pubs/statistics/index.aspx.
  38. G. Danaei, M. M. Finucane, Y. Lu et al., “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” The Lancet, vol. 378, no. 9785, pp. 31–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. IDF Diabetes Atlas, International Diabetes Federation, http://www.idf.org/diabetesatlas/5e/the-global-burden.
  40. R. W. Lewis, K. S. Fugl-Meyer, G. Corona et al., “Definitions/epidemiology/risk factors for sexual dysfunction,” The Journal of Sexual Medicine, vol. 7, no. 4, pp. 1598–1607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. A. Feldman, I. Goldstein, D. G. Hatzichristou, R. J. Krane, and J. B. McKinlay, “Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging study,” Journal of Urology, vol. 151, no. 1, pp. 54–61, 1994. View at Google Scholar · View at Scopus
  42. A. Ponholzer, C. Temml, K. Mock, M. Marszalek, R. Obermayr, and S. Madersbacher, “Prevalence and risk factors for erectile dysfunction in 2869 men using a validated questionnaire,” European Urology, vol. 47, no. 1, pp. 80–85, 2005. View at Google Scholar · View at Scopus
  43. V. Fonseca, A. Seftel, J. Denne, and P. Fredlund, “Impact of diabetes mellitus on the severity of erectile dysfunction and response to treatment: analysis of data from tadalafil clinical trials,” Diabetologia, vol. 47, no. 11, pp. 1914–1923, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. F. Penson, D. M. Latini, D. P. Lubeck, K. L. Wallace, J. M. Henning, and T. F. Lue, “Do impotent men with diabetes have more severe erectile dysfunction and worse quality of life than the general population of impotent patients? Results from the Exploratory Comprehensive Evaluation of Erectile Dysfunction (ExCEED) database,” Diabetes Care, vol. 26, no. 4, pp. 1093–1099, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Albersen, G. Lin, T. M. Fandel et al., “Functional, metabolic, and morphologic characteristics of a novel rat model of type 2 diabetes-associated erectile dysfunction,” Urology, vol. 78, no. 2, pp. 476.e1–476.e8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. R. Dashwood, A. Crump, X. Shi-Wen, and A. Loesch, “Identification of neuronal nitric oxide synthase (nNOS) in human penis: a potential role of reduced neuronally-derived nitric oxide in erectile dysfunction,” Current Pharmaceutical Biotechnology, vol. 12, no. 9, pp. 1316–1321, 2011. View at Google Scholar · View at Scopus
  47. F. Zhou, H. Xin, T. Liu et al., “Effects of icariside II on improving erectile function in rats with streptozotocin-induced diabetes,” Journal of Andrology, vol. 33, pp. 832–844, 2012. View at Google Scholar
  48. S. Cellek, N. A. Foxwell, and S. Moncada, “Two phases of nitrergic neuropathy in streptozotocin-induced diabetic rats,” Diabetes, vol. 52, no. 9, pp. 2353–2362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Qiu, G. Lin, Z. Xin et al., “Effects of low-energy shockwave therapy on the erectile function and tissue of a diabetic rat model,” The Journal of Sexual Medicine, vol. 10, pp. 738–746, 2013. View at Google Scholar
  50. C. Costa, R. Soares, Â. Castela et al., “Increased endothelial apoptotic cell density in human diabetic erectile tissue—comparison with clinical data,” The Journal of Sexual Medicine, vol. 6, no. 3, pp. 826–835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Ning, G. Lin, T. F. Lue et al., “A coculture system of cavernous endothelial and smooth muscle cells,” International Journal of Impotence Research, vol. 25, pp. 63–68, 2013. View at Google Scholar
  52. K. Park, K. S. Ryu, W. J. Li, S. W. Kim, and J. Paick, “Chronic treatment with a type 5 phosphodiesterase inhibitor suppresses apoptosis of corporal smooth muscle by potentiating Akt signalling in a rat model of diabetic erectile dysfunction,” European Urology, vol. 53, no. 6, pp. 1282–1288, 2008. View at Google Scholar · View at Scopus
  53. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Brandeis, C. L. Pashos, J. M. Henning et al., “A nationwide charge comparison of the principal treatments for early stage prostate carcinoma,” Cancer, vol. 89, pp. 1792–1799, 2000. View at Google Scholar
  55. R. C. Dean and T. F. Lue, “Neuroregenerative strategies after radical prostatectomy,” Reviews in Urology, vol. 7, supplement 2, pp. S26–S32, 2005. View at Google Scholar
  56. M. Kendirci, J. Bejma, and W. J. G. Hellstrom, “Update on erectile dysfunction in prostate cancer patients,” Current Opinion in Urology, vol. 16, no. 3, pp. 186–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. M. J. Resnick, T. Koyama, K. H. Fan et al., “Long-term functional outcomes after treatment for localized prostate cancer,” The New England Journal of Medicine, vol. 368, pp. 436–445, 2013. View at Google Scholar
  58. V. Ficarra, G. Novara, T. E. Ahlering et al., “Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy,” European Urology, vol. 62, pp. 418–430, 2012. View at Google Scholar
  59. Y. Pardo, F. Guedea, F. Aguilo et al., “Quality-of-life impact of primary treatments for localized prostate cancer in patients without hormonal treatment,” Journal of Clinical Oncology, vol. 28, pp. 4687–4696, 2010. View at Google Scholar
  60. M. Fode, D. A. Ohl, D. Ralph et al., “Penile rehabilitation after radical prostatectomy: what the evidence really says,” BJU International, vol. 112, no. 7, pp. 998–1008, 2013. View at Publisher · View at Google Scholar
  61. M. Albersen, M. Kendirci, F. van der Aa, W. J. G. Hellstrom, T. F. Lue, and J. L. Spees, “Multipotent stromal cell therapy for cavernous nerve injury-induced erectile dysfunction,” The Journal of Sexual Medicine, vol. 9, no. 2, pp. 385–403, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. M. G. Ferrini, H. H. Davila, I. Kovanecz, S. P. Sanchez, N. F. Gonzalez-Cadavid, and J. Rajfer, “Vardenafil prevents fibrosis and loss of corporal smooth muscle that occurs after bilateral cavernosal nerve resection in the rat,” Urology, vol. 68, no. 2, pp. 429–435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. L. T. Klein, M. I. Miller, R. Buttyan et al., “Apoptosis in the rat penis after penile denervation,” Journal of Urology, vol. 158, no. 2, pp. 626–630, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. J. J. Lysiak, S. Yang, A. P. Klausner, H. Son, J. B. Tuttle, and W. D. Steers, “Tadalafil increases Akt and extracellular signal-regulated kinase 1/2 activation, and prevents apoptotic cell death in the penis following denervation,” Journal of Urology, vol. 179, no. 2, pp. 779–785, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Leungwattanakij, T. J. Bivalacqua, M. F. Usta et al., “Cavernous neurotomy causes hypoxia and fibrosis in rat corpus cavernosum,” Journal of Andrology, vol. 24, no. 2, pp. 239–245, 2003. View at Google Scholar · View at Scopus
  66. W. Hu, L. Hu, J. Song et al., “Fibrosis of corpus cavernosum in animals following cavernous nerve ablation,” Asian Journal of Andrology, vol. 6, no. 2, pp. 111–116, 2004. View at Google Scholar · View at Scopus
  67. F. Iacono, R. Giannella, P. Somma, G. Manno, F. Fusco, and V. Mirone, “Histological alterations in cavernous tissue after radical prostatectomy,” Journal of Urology, vol. 173, no. 5, pp. 1673–1676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Carrier, H. Hricak, S.-S. Lee et al., “Radiation-induced decrease in nitric oxide synthase—containing nerves in the rat penis,” Radiology, vol. 195, no. 1, pp. 95–99, 1995. View at Google Scholar · View at Scopus
  69. M. Kimura, H. Yan, Z. Rabbani et al., “Radiation-induced erectile dysfunction using prostate-confined modern radiotherapy in a rat model,” The Journal of Sexual Medicine, vol. 8, no. 8, pp. 2215–2226, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Garaffa, L. W. Trost, E. C. Serefoglu et al., “Understanding the course of Peyronie's disease,” International Journal of Clinical Practice, vol. 67, pp. 781–788, 2013. View at Google Scholar
  71. T. J. Walsh, J. M. Hotaling, T. F. Lue et al., “How curved is too curved? The severity of penile deformity may predict sexual disability among men with Peyronie's disease,” International Journal of Impotence Research, vol. 25, pp. 109–112, 2013. View at Google Scholar
  72. J. A. Lopez and J. P. Jarow, “Penile vascular evaluation of men with Peyronie's disease,” Journal of Urology, vol. 149, no. 1, pp. 53–55, 1993. View at Google Scholar · View at Scopus
  73. M. Çulha, B. Alici, O. Acar, N. Mutlu, and A. Gökalp, “The relationship between diabetes mellitus, impotence and veno-occlusive dysfunction in Peyronie's disease patients,” Urologia Internationalis, vol. 60, no. 2, pp. 101–104, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. J. F. Stecker Jr. and C. J. Devine Jr., “Evaluation of erectile dysfunction in patients with Peyronie's disease,” Journal of Urology, vol. 132, no. 4, pp. 680–681, 1984. View at Google Scholar · View at Scopus
  75. T. J. Bivalacqua, E. K. Diner, T. E. Novak et al., “A rat model of Peyronie's disease associated with a decrease in erectile activity and an increase in inducible nitric oxide synthase protein expression,” Journal of Urology, vol. 163, no. 6, pp. 1992–1998, 2000. View at Google Scholar · View at Scopus
  76. D. Martinez, C. E. Ercole, T. S. Hakky et al., “Peyronie's disease: still a surgical disease,” Advances in Urology, vol. 2012, Article ID 206284, 5 pages, 2012. View at Publisher · View at Google Scholar
  77. A. Kadioglu, O. Sanli, T. Akman et al., “Graft materials in Peyronie's disease surgery: a comprehensive review,” The Journal of Sexual Medicine, vol. 4, pp. 581–595, 2007. View at Google Scholar
  78. L. Ma, Y. Yang, S. C. Sikka et al., “Adipose tissue-derived stem cell-seeded small intestinal submucosa for tunica albuginea grafting and reconstruction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 6, pp. 2090–2095, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Castiglione, P. Hedlund, F. van der Aa et al., “Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie's disease,” European Urology, vol. 63, pp. 551–560, 2013. View at Google Scholar
  80. J. Y. Bahk, J. H. Jung, H. Han, S. K. Min, and Y. S. Lee, “Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: preliminary report of 7 cases,” Experimental and Clinical Transplantation, vol. 8, no. 2, pp. 150–160, 2010. View at Google Scholar · View at Scopus
  81. T. J. Bivalacqua, W. Deng, M. Kendirci et al., “Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 292, no. 3, pp. H1278–H1290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Nolazco, I. Kovanecz, D. Vernet et al., “Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat,” BJU International, vol. 101, no. 9, pp. 1156–1164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. M. T. Abdel Aziz, S. El-Haggar, T. Mostafa et al., “Effect of mesenchymal stem cell penile transplantation on erectile signaling of aged rats,” Andrologia, vol. 42, no. 3, pp. 187–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Huang, H. Ning, A. W. Shindel et al., “The effect of intracavernous injection of adipose tissue-derived stem cells on hyperlipidemia-associated erectile dysfunction in a rat model,” The Journal of Sexual Medicine, vol. 7, no. 4, pp. 1391–1400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. M. M. Garcia, T. M. Fandel, G. Lin et al., “Treatment of erectile dysfunction in the obese Type 2 diabetic ZDF rat with adipose tissue-derived stem cells,” The Journal of Sexual Medicine, vol. 7, no. 1, pp. 89–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Gou, W. He, M. Xiao et al., “Transplantation of endothelial progenitor cells transfected with VEGF165 to restore erectile function in diabetic rats,” Asian Journal of Andrology, vol. 13, no. 2, pp. 332–338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. X. Qiu, H. Lin, Y. Wang et al., “Intracavernous transplantation of bone marrow-derived mesenchymal stem cells restores erectile function of streptozocin-induced diabetic rats,” The Journal of Sexual Medicine, vol. 8, no. 2, pp. 427–436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. X. Qiu, C. Sun, W. Yu et al., “Combined strategy of mesenchymal stem cell injection with vascular endothelial growth factor gene therapy for the treatment of diabetes-associated erectile dysfunction,” Journal of Andrology, vol. 33, no. 1, pp. 37–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Sun, H. Lin, W. Yu et al., “Neurotrophic effect of bone marrow mesenchymal stem cells for erectile dysfunction in diabetic rats,” International Journal of Andrology, vol. 35, pp. 601–607, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Nishimatsu, E. Suzuki, S. Kumano et al., “Adrenomedullin mediates adipose tissue-derived stem cell-induced restoration of erectile function in diabetic rats,” The Journal of Sexual Medicine, vol. 9, no. 2, pp. 482–493, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. J. K. Ryu, M. Tumurbaatar, H. R. Jin et al., “Intracavernous delivery of freshly isolated stromal vascular fraction rescues erectile function by enhancing endothelial regeneration in the streptozotocin-induced diabetic mouse,” The Journal of Sexual Medicine, vol. 9, pp. 3051–3065, 2012. View at Google Scholar
  92. Y. He, W. He, G. Qin et al., “Transplantation KCNMA1 modified bone marrow-mesenchymal stem cell therapy for diabetes mellitus-induced erectile dysfunction,” Andrologia, 2013. View at Publisher · View at Google Scholar
  93. G. Liu, X. Sun, J. Bian et al., “Correction of diabetic erectile dysfunction with adipose derived stem cells modified with the vascular endothelial growth factor gene in a rodent diabetic model,” PLoS ONE, vol. 8, Article ID e72790, 2013. View at Google Scholar
  94. D. Bochinski, G. T. Lin, L. Nunes et al., “The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury,” BJU International, vol. 94, no. 6, pp. 904–909, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Kim, F. de Miguel, I. Usiene et al., “Injection of skeletal muscle-derived cells into the penis improves erectile function,” International Journal of Impotence Research, vol. 18, no. 4, pp. 329–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. P. A. Fall, M. Izikki, L. Tu et al., “Apoptosis and effects of intracavernous bone marrow cell injection in a rat model of postprostatectomy erectile dysfunction,” European Urology, vol. 56, pp. 716–725, 2009. View at Google Scholar
  97. M. Albersen, T. M. Fandel, G. Lin et al., “Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury,” The Journal of Sexual Medicine, vol. 7, no. 10, pp. 3331–3340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Kendirci, L. Trost, B. Bakondi, M. J. Whitney, W. J. G. Hellstrom, and J. L. Spees, “Transplantation of nonhematopoietic adult bone marrow stem/progenitor cells isolated by p75 nerve growth factor receptor into the penis rescues erectile function in a rat model of cavernous nerve injury,” Journal of Urology, vol. 184, no. 4, pp. 1560–1566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. G. Lin, M. Albersen, A. M. Harraz et al., “Cavernous nerve repair with allogenic adipose matrix and autologous adipose-derived stem cells,” Urology, vol. 77, no. 6, pp. 1509.e1–1509.e8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. J. C. Woo, W. J. Bae, S. J. Kim et al., “Transplantation of muscle-derived stem cells into the corpus avernosum restores erectile function in a rat model of cavernous nerve injury,” Korean Journal of Urology, vol. 52, no. 5, pp. 359–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. T. M. Fandel, M. Albersen, G. Lin et al., “Recruitment of intracavernously injected adipose-derived stem cells to the major pelvic ganglion improves erectile function in a rat model of cavernous nerve injury,” European Urology, vol. 61, no. 1, pp. 201–210, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. S. J. Kim, S. W. Choi, K. J. Hur et al., “Synergistic effect of mesenchymal stem cells infected with recombinant adenovirus expressing human BDNF on erectile function in a rat model of cavernous nerve injury,” Korean Journal of Urology, vol. 53, pp. 726–732, 2012. View at Google Scholar
  103. I. Kovanecz, S. Rivera, G. Nolazco et al., “Separate or combined treatments with daily sildenafil, molsidomine, or muscle-derived stem cells prevent erectile dysfunction in a rat model of cavernosal nerve damage,” The Journal of Sexual Medicine, vol. 9, pp. 2814–2826, 2012. View at Google Scholar
  104. S. Piao, I. G. Kim, J. Y. Lee et al., “Therapeutic effect of adipose-derived stem cells and BDNF-immobilized PLGA membrane in a rat model of cavernous nerve injury,” The Journal of Sexual Medicine, vol. 9, pp. 1968–1979, 2012. View at Google Scholar
  105. X. Qiu, J. Villalta, L. Ferretti et al., “Effects of intravenous injection of adipose-derived stem cells in a rat model of radiation therapy-induced erectile dysfunction,” The Journal of Sexual Medicine, vol. 9, pp. 1834–1841, 2012. View at Publisher · View at Google Scholar · View at Scopus
  106. X. Qiu, T. M. Fandel, L. Ferretti et al., “Both immediate and delayed intracavernous injection of autologous adipose-derived stromal vascular fraction enhances recovery of erectile function in a rat model of cavernous nerve injury,” European Urology, vol. 62, pp. 720–727, 2012. View at Google Scholar
  107. H. H. Jeong, S. Piao, J. N. Ha et al., “Combined therapeutic effect of udenafil and adipose-derived stem cell (ADSC)/brain-derived neurotrophic factor (BDNF)-membrane system in a rat model of cavernous nerve injury,” Urology, vol. 81, pp. 1108. e7–1108. e14, 2013. View at Google Scholar
  108. I. G. Kim, S. Piao, J. Y. Lee et al., “Effect of an adipose-derived stem cell and nerve growth factor-incorporated hydrogel on recovery of erectile function in a rat model of cavernous nerve injury,” Tissue Engineering A, vol. 19, pp. 14–23, 2013. View at Google Scholar
  109. D. You, M. J. Jang, J. Lee et al., “Periprostatic implantation of human bone marrow-derived mesenchymal stem cells potentiates recovery of erectile function by intracavernosal injection in a rat model of cavernous nerve injury,” Urology, vol. 81, pp. 104–110, 2013. View at Google Scholar
  110. D. You, M. J. Jang, J. Lee et al., “Comparative analysis of periprostatic implantation and intracavernosal injection of human adipose tissue-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury,” Prostate, vol. 73, pp. 278–286, 2013. View at Google Scholar
  111. W. Y. Choi, H. G. Jeon, Y. Chung et al., “Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy,” Stem Cells and Development, vol. 22, pp. 2158–2173, 2013. View at Google Scholar
  112. C. Ying, M. Yang, X. Zheng et al., “Effects of intracavernous injection of adipose-derived stem cells on cavernous nerve regeneration in a rat model,” Cellular and Molecular Neurobiology, vol. 33, pp. 233–240, 2013. View at Google Scholar
  113. B. F. Koontz, H. Yan, M. Kimura, Z. Vujaskovic, C. Donatucci, and F. Yin, “Feasibility study of an intensity-modulated radiation model for the study of erectile dysfunction,” The Journal of Sexual Medicine, vol. 8, no. 2, pp. 411–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. G. J. van der Wielen, M. Vermeij, B. W. D. de Jong et al., “Changes in the penile arteries of the rat after fractionated irradiation of the prostate: a pilot study,” The Journal of Sexual Medicine, vol. 6, no. 7, pp. 1908–1913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. L. da Silva Meirelles, P. C. Chagastelles, and N. B. Nardi, “Mesenchymal stem cells reside in virtually all post-natal organs and tissues,” Journal of Cell Science, vol. 119, no. 11, pp. 2204–2213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. G. Lin, M. Garcia, H. Ning et al., “Defining stem and progenitor cells within adipose tissue,” Stem Cells and Development, vol. 17, no. 6, pp. 1053–1063, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Braun, A. Kurtz, N. Barutcu et al., “Concerted regulation of CD34 and CD105 accompanies mesenchymal stromal cell derivation from human adventitial stromal cell,” Stem Cells and Development, vol. 22, pp. 815–827, 2013. View at Google Scholar
  119. M. Corselli, C. W. Chen, B. Sun et al., “The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells,” Stem Cells and Development, vol. 21, pp. 1299–1308, 2012. View at Google Scholar
  120. G. Lin, Z. Xin, H. Zhang et al., “Identification of active and quiescent adipose vascular stromal cells,” Cytotherapy, vol. 14, no. 2, pp. 240–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Maumus, J.-A. Peyrafitte, R. D'Angelo et al., “Native human adipose stromal cells: localization, morphology and phenotype,” International Journal of Obesity, vol. 35, no. 9, pp. 1141–1153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. L. Zimmerlin, V. S. Donnenberg, M. E. Pfeifer et al., “Stromal vascular progenitors in adult human adipose tissue,” Cytometry A, vol. 77, no. 1, pp. 22–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. C. S. Lin and T. F. Lue, “Defining vascular stem cells,” Stem Cells and Development, vol. 22, pp. 1018–1026, 2013. View at Google Scholar
  124. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. C. S. Lin and T. F. Lue, “Adipose-derived stem cells: therapy through paracrine actions,” in Stem Cells and Cancer Stem Cells, M. A. Hayat, Ed., vol. 4, pp. 203–216, Springer, New York, NY, USA, 2012. View at Google Scholar
  126. C. S. Lin, Z. C. Xin, J. Dai et al., “Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges,” Histology and Histopathology, vol. 28, pp. 1109–1116, 2013. View at Google Scholar
  127. C. S. Lin, H. Ning, G. Lin et al., “Is CD34 truly a negative marker for mesenchymal stromal cells?” Cytotherapy, vol. 14, pp. 1159–1163, 2012. View at Google Scholar
  128. P. J. Simmons and B. Torok-Storb, “Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1,” Blood, vol. 78, no. 1, pp. 55–62, 1991. View at Google Scholar · View at Scopus
  129. P. J. Simmons and B. Torok-Storb, “CD34 expression by stromal precursors in normal human adult bone marrow,” Blood, vol. 78, no. 11, pp. 2848–2853, 1991. View at Google Scholar · View at Scopus
  130. C. M. Kolf, E. Cho, and R. S. Tuan, “Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation,” Arthritis Research and Therapy, vol. 9, no. 1, pp. 204–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. G. Lin, G. Liu, L. Banie et al., “Tissue distribution of mesenchymal stem cell marker stro-1,” Stem Cells and Development, vol. 20, no. 10, pp. 1747–1752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. A. I. Caplan and D. Correa, “The MSC: an injury drugstore,” Cell Stem Cell, vol. 9, no. 1, pp. 11–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. D. J. Prockop and J. Y. Oh, “Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations,” Journal of Cellular Biochemistry, vol. 113, no. 5, pp. 1460–1469, 2012. View at Publisher · View at Google Scholar · View at Scopus
  134. M. B. Murphy, K. Moncivais, and A. I. Caplan, “Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine,” Experimental & Molecular Medicine, vol. 45, article e54, 2013. View at Google Scholar
  135. D. Brenin, J. Look, M. Bader, N. Hübner, G. Levan, and P. Iannaccone, “Rat embryonic stem cells: a progress report,” Transplantation Proceedings, vol. 29, no. 3, pp. 1761–1765, 1997. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Kawamata and T. Ochiya, “Establishment of embryonic stem cells from rat blastocysts,” Methods in Molecular Biology, vol. 597, pp. 169–177, 2010. View at Google Scholar · View at Scopus
  137. M. Schulze, H. Ungefroren, M. Bader, and F. Fändrich, “Derivation, maintenance, and characterization of rat embryonic stem cells in vitro,” Methods in Molecular Biology, vol. 329, pp. 45–58, 2006. View at Google Scholar · View at Scopus
  138. H. Ning, G. Lin, T. F. Lue, and C. Lin, “Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells,” Differentiation, vol. 74, no. 9-10, pp. 510–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. A. B. Mathiasen, E. Jorgensen, A. A. Qayyum et al., “Rationale and design of the first randomized, double-blind, placebo-controlled trial of intramyocardial injection of autologous bone-marrow derived Mesenchymal Stromal Cells in chronic ischemic Heart Failure (MSC-HF Trial),” American Heart Journal, vol. 164, pp. 285–291, 2012. View at Google Scholar
  140. T. Asahara and J. M. Isner, “Endothelial progenitor cells for vascular regeneration,” Journal of Hematotherapy and Stem Cell Research, vol. 11, no. 2, pp. 171–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. C. Foresta, N. Caretta, A. Lana, A. Cabrelle, G. Palù, and A. Ferlin, “Circulating endothelial progenitor cells in subjects with erectile dysfunction,” International Journal of Impotence Research, vol. 17, no. 3, pp. 288–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Foresta, N. Caretta, A. Lana et al., “Relationship between vascular damage degrees and endothelial progenitor cells in patients with erectile dysfunction: effect of vardenafil administration and PDE5 expression in the bone marrow,” European Urology, vol. 51, no. 5, pp. 1411–1419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. C. Foresta, A. Ferlin, L. de Toni et al., “Circulating endothelial progenitor cells and endothelial function after chronic Tadalafil treatment in subjects with erectile dysfunction,” International Journal of Impotence Research, vol. 18, no. 5, pp. 484–488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Baumhäkel, N. Werner, M. Böhm, and G. Nickenig, “Circulating endothelial progenitor cells correlate with erectile function in patients with coronary heart disease,” European Heart Journal, vol. 27, no. 18, pp. 2184–2188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. K. Esposito, M. Ciotola, M. I. Maiorino et al., “Circulating CD34+KDR+ endothelial progenitor cells correlate with erectile function and endothelial function in overweight men,” The Journal of Sexual Medicine, vol. 6, no. 1, pp. 107–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. T. E. Ichim, Z. Zhong, N. A. Mikirova et al., “Circulating endothelial progenitor cells and erectile dysfunction: possibility of nutritional intervention?” Panminerva Medica, vol. 52, no. 2, pp. 75–80, 2010. View at Google Scholar · View at Scopus
  147. S. la Vignera, R. Condorelli, E. Vicari, R. D'Agata, and A. E. Calogero, “Circulating endothelial progenitor cells and endothelial microparticles in patients with arterial erectile dysfunction and metabolic syndrome,” Journal of Andrology, vol. 33, no. 2, pp. 202–209, 2012. View at Publisher · View at Google Scholar · View at Scopus
  148. S. la Vignera, R. Condorelli, E. Vicari, R. D'Agata, and A. Calogero, “Original immunophenotype of blood endothelial progenitor cells and microparticles in patients with isolated arterial erectile dysfunction and late onset hypogonadism: effects of androgen replacement therapy,” Aging Male, vol. 14, no. 3, pp. 183–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. S. la Vignera, R. A. Condorelli, E. Vicari, R. D'Agata, and A. E. Calogero, “New immunophenotype of blood endothelial progenitor cells and endothelial microparticles in patients with arterial erectile dysfunction and late-onset hypogonadism,” Journal of Andrology, vol. 32, no. 5, pp. 509–517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. M. C. Yoder and D. A. Ingram, “Endothelial progenitor cell: ongoing controversy for defining these cells and their role in neoangiogenesis in the murine system,” Current Opinion in Hematology, vol. 16, no. 4, pp. 269–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. A. Mohammad and A. Shuaib, “Endothelial progenitor cells and vascular disease: are they for real?” Neurology, vol. 75, no. 23, pp. 2050–2051, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Prokopi, G. Pula, U. Mayr et al., “Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures,” Blood, vol. 114, no. 3, pp. 723–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. M. C. Yoder, “Is endothelium the origin of endothelial progenitor cells?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, pp. 1094–1103, 2010. View at Google Scholar
  154. M. R. Richardson and M. C. Yoder, “Endothelial progenitor cells: quo vadis?” Journal of Molecular and Cellular Cardiology, vol. 50, no. 2, pp. 266–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. M. C. Yoder, “Endothelial progenitor cell: a blood cell by many other names may serve similar functions,” Journal of Molecular Medicine, vol. 91, pp. 285–295, 2013. View at Google Scholar
  156. F. Timmermans, J. Plum, M. C. Yöder, D. A. Ingram, B. Vandekerckhove, and J. Case, “Endothelial progenitor cells: identity defined?” Journal of Cellular and Molecular Medicine, vol. 13, no. 1, pp. 87–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. J. Z. Shi, H. Zhang, M. Hou et al., “Is it possible to obtain “true endothelial progenitor cells” by in vitro culture of bone marrow mononuclear cells?” Stem Cells and Development, vol. 16, no. 4, pp. 683–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. J. L. Goldberg, M. J. Laughlin, and V. J. Pompili, “Umbilical cord blood stem cells: implications for cardiovascular regenerative medicine,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 5, pp. 912–920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. J. H. Park, I. Hwang, S. H. Hwang et al., “Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action,” Diabetes Research and Clinical Practice, vol. 98, pp. 465–473, 2012. View at Google Scholar
  160. T. Yokoyama, R. Pruchnic, J. Y. Lee et al., “Autologous primary muscle-derived cells transfer into the lower urinary tract,” Tissue Engineering, vol. 7, no. 4, pp. 395–404, 2001. View at Publisher · View at Google Scholar · View at Scopus
  161. T. Yokoyama, N. Yoshimura, R. Dhir et al., “Persistence and survival of autologous muscle derived cells versus bovine collagen as potential treatment of stress urinary incontinence,” Journal of Urology, vol. 165, no. 1, pp. 271–276, 2001. View at Google Scholar · View at Scopus
  162. A. Furuta, L. K. Carr, N. Yoshimura et al., “Advances in the understanding of sress urinary incontinence and the promise of stem-cell therapy,” Reviews in Urology, vol. 9, pp. 106–112, 2007. View at Google Scholar
  163. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  164. Y. C. Halvorsen, W. O. Wilkison, and J. M. Gimble, “Adipose-derived stromal cells—their utility and petential in bone formation,” International Journal of Obesity, vol. 24, supplement 4, pp. S41–S44, 2000. View at Publisher · View at Google Scholar · View at Scopus
  165. S. Gronthos, D. M. Franklin, H. A. Leddy et al., “Surface protein characterization of human adipose tissue-derived stromal cells,” Journal of Cellular Physiology, vol. 189, pp. 54–63, 2001. View at Google Scholar
  166. Y. C. Halvorsen, A. Bond, A. Sen et al., “Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis,” Metabolism, vol. 50, no. 4, pp. 407–413, 2001. View at Publisher · View at Google Scholar · View at Scopus
  167. Y.-D. C. Halvorsen, D. Franklin, A. L. Bond et al., “Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells,” Tissue Engineering, vol. 7, no. 6, pp. 729–741, 2001. View at Publisher · View at Google Scholar · View at Scopus
  168. A. Sen, Y. R. Lea-Currie, D. Sujkowska et al., “Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous,” Journal of Cellular Biochemistry, vol. 81, pp. 312–319, 2001. View at Google Scholar
  169. P. Wu, K. Sato, S. Yukawa, Y. Hikasa, and K. Kagota, “Differentiation of stromal-vascular cells isolated from canine adipose tissues in primary culture,” Journal of Veterinary Medical Science, vol. 63, no. 1, pp. 17–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  170. P. Pettersson, M. Cigolini, and L. Sjostrom, “Cells in human adipose tissue developing into adipocytes,” Acta Medica Scandinavica, vol. 215, no. 5, pp. 447–451, 1984. View at Google Scholar · View at Scopus
  171. B. M. Strem, K. C. Hicok, M. Zhu et al., “Multipotential differentiation of adipose tissue-derived stem cells,” Keio Journal of Medicine, vol. 54, no. 3, pp. 132–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  172. T. K. Kim and J. H. Eberwine, “Mammalian cell transfection: the present and the future,” Analytical and Bioanalytical Chemistry, vol. 397, no. 8, pp. 3173–3178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. C. S. Lin, G. Lin, and T. F. Lue, “Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants,” Stem Cells and Development, vol. 21, pp. 2770–2778, 2012. View at Google Scholar
  174. J. M. Hare, J. E. Fishman, G. Gerstenblith et al., “Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial,” Journal of the American Medical Association, vol. 308, pp. 2369–2379, 2012. View at Google Scholar
  175. G. Lin, X. Qiu, T. Fandel et al., “Tracking intracavernously injected adipose-derived stem cells to bone marrow,” International Journal of Impotence Research, vol. 23, no. 6, pp. 268–275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  176. H. Zhang, H. Ning, L. Banie et al., “Adipose tissue-derived stem cells secrete CXCL5 cytokine with chemoattractant and angiogenic properties,” Biochemical and Biophysical Research Communications, vol. 402, no. 3, pp. 560–564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. H. Zhang, R. Yang, Z. Wang, G. Lin, T. F. Lue, and C. Lin, “Adipose tissue-derived stem cells secrete CXCL5 cytokine with neurotrophic effects on cavernous nerve regeneration,” The Journal of Sexual Medicine, vol. 8, no. 2, pp. 437–446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. E. D. Kim, R. Nath, K. M. Slawin, D. Kadmon, B. J. Miles, and P. T. Scardino, “Bilateral nerve grafting during radical retropubic prostatectomy: extended follow-up,” Urology, vol. 58, no. 6, pp. 983–987, 2001. View at Publisher · View at Google Scholar · View at Scopus
  179. B. A. Nelson, S. S. Chang, M. S. Cookson, and J. A. Smith Jr., “Morbidity and efficacy of genitofemoral nerve grafts with radical retropubic prostatectomy,” Urology, vol. 67, no. 4, pp. 789–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  180. G. Lin, G. Wang, L. Banie et al., “Treatment of stress urinary incontinence with adipose tissue-derived stem cells,” Cytotherapy, vol. 12, no. 1, pp. 88–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. Y. Huang, A. W. Shindel, H. Ning et al., “Adipose derived stem cells ameliorate hyperlipidemia associated detrusor overactivity in a rat model,” Journal of Urology, vol. 183, no. 3, pp. 1232–1240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  182. H. Ning, G. Liu, G. Lin, R. Yang, T. F. Lue, and C. Lin, “Fibroblast growth factor 2 promotes endothelial differentiation of adipose tissue-derived stem cell,” The Journal of Sexual Medicine, vol. 6, no. 4, pp. 967–979, 2009. View at Publisher · View at Google Scholar · View at Scopus