Table of Contents
Advances in Andrology
Volume 2014, Article ID 748352, 9 pages
http://dx.doi.org/10.1155/2014/748352
Review Article

Looking beyond Androgen Receptor Signaling in the Treatment of Advanced Prostate Cancer

1Department of Molecular and Cellular Biochemistry and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
2Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA

Received 19 January 2014; Accepted 17 March 2014; Published 10 April 2014

Academic Editor: Wen-Chin Huang

Copyright © 2014 Benjamin Sunkel and Qianben Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. Fuller, “The steroid receptor superfamily: mechanisms of diversity,” The FASEB Journal, vol. 5, no. 15, pp. 3092–3099, 1991. View at Google Scholar · View at Scopus
  2. K. de Gendt and G. Verhoeven, “Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice,” Molecular and Cellular Endocrinology, vol. 352, no. 1-2, pp. 13–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Centenera, J. M. Harris, W. D. Tilley, and L. M. Butler, “The contribution of different androgen receptor domains to receptor dimerization and signaling,” Molecular Endocrinology, vol. 22, no. 11, pp. 2373–2382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Claessens, S. Denayer, N. van Tilborgh, S. Kerkhofs, C. Helsen, and A. Haelens, “Diverse roles of androgen receptor (AR) domains in AR-mediated signaling,” Nuclear Receptor Signaling, vol. 6, article e008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Heinlein and C. Chang, “Androgen receptor in prostate cancer,” Endocrine Reviews, vol. 25, no. 2, pp. 276–308, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Huggins and P. J. Clark, “Quantitative studies of prostatic secretion: II. The effect of castration and of estrogen injection on the normal and on the hyperplastic prostate glands of dogs,” The Journal of Experimental Medicine, vol. 72, no. 6, pp. 747–762, 1940. View at Publisher · View at Google Scholar
  7. C. Huggins and R. A. Stevens, “The effect of castration on benign hypertrophy of the prostate in man,” The Journal of Urology, vol. 43, article 105, 1940. View at Google Scholar
  8. C. Huggins and C. V. Hodges, “Studies on prostate cancer: I. The effects of castration of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate,” Cancer Research, vol. 1, article 203, 1941. View at Google Scholar
  9. S. R. Denmeade and J. T. Isaacs, “A history of prostate cancer treatment,” Nature Reviews Cancer, vol. 2, no. 5, pp. 389–396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Tolis, D. Ackman, and A. Stellos, “Tumor growth inhibition in patients with prostatic carcinoma treated with luteinizing hormone-releasing hormone agonists,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 5, pp. 1658–1662, 1982. View at Google Scholar · View at Scopus
  11. E. J. Sanford, J. R. Drago, and T. J. Rohner Jr., “Aminoglutethimide medical adrenalectomy for advanced prostatic carcinoma,” The Journal of Urology, vol. 115, no. 2, pp. 170–174, 1976. View at Google Scholar · View at Scopus
  12. K. M. Anderson and S. Liao, “Selective retention of dihydrotestosterone by prostatic nuclei,” Nature, vol. 219, no. 5151, pp. 277–279, 1968. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Bruchovsky and J. D. Wilson, “The intranuclear binding of testosterone and 5-alpha-androstan-17-beta-ol-3-one by rat prostate,” The Journal of Biological Chemistry, vol. 243, no. 22, pp. 5953–5960, 1968. View at Google Scholar · View at Scopus
  14. W. I. Mainwaring, “A soluble androgen receptor in the cytoplasm of rat prostate,” Journal of Endocrinology, vol. 45, no. 4, pp. 531–541, 1969. View at Google Scholar · View at Scopus
  15. S. Liao, D. K. Howell, and T. M. Chang, “Action of a nonsteroidal antiandrogen, flutamide, on the receptor binding and nuclear retention of 5α- dihydrotestosterone in rat ventral prostate,” Endocrinology, vol. 94, no. 4, pp. 1205–1209, 1974. View at Publisher · View at Google Scholar · View at Scopus
  16. K. E. Knudsen and H. I. Scher, “Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer,” Clinical Cancer Research, vol. 15, no. 15, pp. 4792–4798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Chen, C. L. Sawyers, and H. I. Scher, “Targeting the androgen receptor pathway in prostate cancer,” Current Opinion in Pharmacology, vol. 8, no. 4, pp. 440–448, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. A. Loblaw, K. S. Virgo, R. Nam et al., “Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology Practice Guideline,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1596–1605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. D. Debes and D. J. Tindall, “Mechanisms of androgen-refractory prostate cancer,” The New England Journal of Medicine, vol. 351, no. 15, pp. 1488–1490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. B. J. Feldman and D. Feldman, “The development of androgen-independent prostate cancer,” Nature Reviews Cancer, vol. 1, no. 1, pp. 34–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. K. E. Knudsen and T. M. Penning, “Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer,” Trends in Endocrinology & Metabolism, vol. 21, no. 5, pp. 315–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Tran, S. Ouk, N. J. Clegg et al., “Development of a second-generation antiandrogen for treatment of advanced prostate cancer,” Science, vol. 324, no. 5928, pp. 787–790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. I. Scher, K. Fizazi, F. Saad et al., “Increased survival with enzalutamide in prostate cancer after chemotherapy,” The New England Journal of Medicine, vol. 367, no. 13, pp. 1187–1197, 2012. View at Publisher · View at Google Scholar
  24. G. Attard, A. H. Reid, T. A. Yap et al., “Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven,” Journal of Clinical Oncology, vol. 26, no. 28, pp. 4563–4571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Attard, A. H. Reid, R. A'Hern et al., “Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer,” Journal of Clinical Oncology, vol. 27, no. 23, pp. 3742–3748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. S. de Bono, C. J. Logothetis, A. Molina et al., “Abiraterone and increased survival in metastatic prostate cancer,” The New England Journal of Medicine, vol. 364, no. 21, pp. 1995–2005, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Tzelepi, J. Zhang, J.-F. Lu et al., “Modeling a lethal prostate cancer variant with small-cell carcinoma features,” Clinical Cancer Research, vol. 18, no. 3, pp. 666–677, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Attard, C. S. Cooper, and J. S. de Bono, “Steroid hormone receptors in prostate cancer: a hard habit to break?” Cancer Cell, vol. 16, no. 6, pp. 458–462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Linja, K. J. Savinainen, O. R. Saramaki, T. L. J. Tammela, R. L. Vessella, and T. Visakorpi, “Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer,” Cancer Research, vol. 61, no. 9, pp. 3550–3555, 2001. View at Google Scholar · View at Scopus
  30. A. Latil, I. Bieche, D. Vidaud et al., “Evaluation of androgen, estrogen (ERα and ERβ), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays,” Cancer Research, vol. 61, no. 5, pp. 1919–1926, 2001. View at Google Scholar · View at Scopus
  31. T. Hara, J.-I. Miyazaki, H. Araki et al., “Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome,” Cancer Research, vol. 63, no. 1, pp. 149–153, 2003. View at Google Scholar · View at Scopus
  32. M. Korpal, J. M. Korn, X. Gao et al., “An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide),” Cancer Discovery, vol. 3, no. 9, pp. 1030–1043, 2013. View at Publisher · View at Google Scholar
  33. J. D. Joseph, N. Lu, J. Qian et al., “A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509,” Cancer Discovery, vol. 3, no. 9, pp. 1020–1029, 2013. View at Publisher · View at Google Scholar
  34. S. M. Dehm, L. J. Schmidt, H. V. Heemers, R. L. Vessella, and D. J. Tindall, “Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance,” Cancer Research, vol. 68, no. 13, pp. 5469–5477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Hu, T. A. Dunn, S. Wei et al., “Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer,” Cancer Research, vol. 69, no. 1, pp. 16–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Guo, X. Yang, F. Sun et al., “A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth,” Cancer Research, vol. 69, no. 6, pp. 2305–2313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Locke, E. S. Guns, A. A. Lubik et al., “Androgen Levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer,” Cancer Research, vol. 68, no. 15, pp. 6407–6415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. B. Montgomery, E. A. Mostaghel, R. Vessella et al., “Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth,” Cancer Research, vol. 68, no. 11, pp. 4447–4454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Stanbrough, G. J. Bubley, K. Ross et al., “Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer,” Cancer Research, vol. 66, no. 5, pp. 2815–2825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. L. A. Ponguta, C. W. Gregory, F. S. French, and E. M. Wilson, “Site-specific androgen receptor serine phosphorylation linked to epidermal growth factor-dependent growth of castration-recurrent prostate cancer,” The Journal of Biological Chemistry, vol. 283, no. 30, pp. 20989–21001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M.-L. Zhu and N. Kyprianou, “Androgen receptor and growth factor signaling cross-talk in prostate cancer cells,” Endocrine-Related Cancer, vol. 15, no. 4, pp. 841–849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Chmelar, G. Buchanan, E. F. Need, W. Tilley, and N. M. Greenberg, “Androgen receptor coregulators and their involvement in the development and progression of prostate cancer,” International Journal of Cancer, vol. 120, no. 4, pp. 719–733, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. C. W. Gregory, B. He, R. T. Johnson et al., “A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy,” Cancer Research, vol. 61, no. 11, pp. 4315–4319, 2001. View at Google Scholar · View at Scopus
  44. I. U. Agoulnik, A. Vaid, W. E. Bingman III et al., “Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression,” Cancer Research, vol. 65, no. 17, pp. 7959–7967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. P. Steinkamp, O. A. O'Mahony, M. Brogley et al., “Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy,” Cancer Research, vol. 69, no. 10, pp. 4434–4442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. American Cancer Society, Cancer Facts and Figures 2012, Atlanta, Ga, USA, American Cancer Society edition, 2012.
  47. S. P. Balk and K. E. Knudsen, “AR, the cell cycle, and prostate cancer,” Nuclear Receptor Signaling, vol. 6, article e001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. Q. Wang, W. Li, Y. Zhang et al., “Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer,” Cell, vol. 138, no. 2, pp. 245–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. C. E. Massie, A. Lynch, A. Ramos-Montoya et al., “The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis,” The EMBO Journal, vol. 30, no. 13, pp. 2719–2733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Ye and M. Rape, “Building ubiquitin chains: E2 enzymes at work,” Nature Reviews Molecular Cell Biology, vol. 10, no. 11, pp. 755–764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. J. H. van Ree, K. B. Jeganathan, L. Malureanu, and J. M. van Deursen, “Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation,” The Journal of Cell Biology, vol. 188, no. 1, pp. 83–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Hu, C. Lu, E. A. Mostaghel et al., “Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer,” Cancer Research, vol. 72, no. 14, pp. 3457–3462, 2012. View at Publisher · View at Google Scholar
  53. K. Xu, Z. J. Wu, A. C. Groner et al., “EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent,” Science, vol. 338, no. 6113, pp. 1465–1469, 2012. View at Publisher · View at Google Scholar
  54. L. K. Povlsen, P. Beli, S. A. Wagner et al., “Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass,” Nature Cell Biology, vol. 14, no. 10, pp. 1089–1098, 2012. View at Publisher · View at Google Scholar
  55. N. L. Sharma, C. E. Massie, A. Ramos-Montoya et al., “The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man,” Cancer Cell, vol. 23, no. 1, pp. 35–47, 2013. View at Publisher · View at Google Scholar
  56. H. Wang, C. Zhang, A. Rorick et al., “CCI-779 inhibits cell-cycle G2-M progression and invasion of castration-resistant prostate cancer via attenuation of UBE2C transcription and mRNA stability,” Cancer Research, vol. 71, no. 14, pp. 4866–4876, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Chen, Y. Chen, C. Hu, H. Jing, Y. Cao, and X. Liu, “Association of clinicopathological features with UbcH10 expression in colorectal cancer,” Journal of Cancer Research and Clinical Oncology, vol. 136, no. 3, pp. 419–426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Loussouarn, L. Campion, F. Leclair et al., “Validation of UBE2C protein as a prognostic marker in node-positive breast cancer,” British Journal of Cancer, vol. 101, no. 1, pp. 166–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. I. W. Cunha, K. C. Carvalho, W. K. Martins et al., “Identification of genes associated with local aggressiveness and metastatic behavior in soft tissue tumors,” Translational Oncology, vol. 3, no. 1, pp. 23–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. Q. Wang, C. G. Bailey, C. Ng et al., “Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression,” Cancer Research, vol. 71, no. 24, pp. 7525–7536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. S. R. Kimball, L. M. Shantz, R. L. Horetsky, and L. S. Jefferson, “Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6,” The Journal of Biological Chemistry, vol. 274, no. 17, pp. 11647–11652, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. Q. Wang, J. Tiffen, C. G. Bailey et al., “Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development,” Journal of the National Cancer Institute, vol. 105, no. 19, pp. 1463–1473, 2013. View at Publisher · View at Google Scholar
  63. K. S. Zaret and J. S. Carroll, “Pioneer transcription factors: establishing competence for gene expression,” Genes & Development, vol. 25, no. 21, pp. 2227–2241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. J. R. Friedman and K. H. Kaestner, “The Foxa family of transcription factors in development and metabolism,” Cellular and Molecular Life Sciences, vol. 63, no. 19-20, pp. 2317–2328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. L. A. Cirillo, C. E. McPherson, P. Bossard et al., “Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome,” The EMBO Journal, vol. 17, no. 1, pp. 244–254, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. L. A. Cirillo, F. R. Lin, I. Cuesta, D. Friedman, M. Jarnik, and K. S. Zaret, “Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4,” Molecular Cell, vol. 9, no. 2, pp. 279–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Lupien, J. Eeckhoute, C. A. Meyer et al., “FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription,” Cell, vol. 132, no. 6, pp. 958–970, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Zhang, L. Wang, D. Wu et al., “Definition of a FoxA1 cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer,” Cancer Research, vol. 71, no. 21, pp. 6738–6748, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. E. LaTulippe, J. Satagopan, A. Smith et al., “Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease,” Cancer Research, vol. 62, no. 15, pp. 4499–4506, 2002. View at Google Scholar · View at Scopus
  70. Y. P. Yu, D. Landsittel, L. Jing et al., “Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy,” Journal of Clinical Oncology, vol. 22, no. 14, pp. 2790–2799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Varambally, J. Yu, B. Laxman et al., “Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression,” Cancer Cell, vol. 8, no. 5, pp. 393–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. A. P. Kumar, S. Bhaskaran, M. Ganapathy et al., “Akt/cAMP-responsive element binding protein/cyclin D1 network: a novel target for prostate cancer inhibition in transgenic adenocarcinoma of mouse prostate model mediated by Nexrutine, a Phellodendron amurense bark extract,” Clinical Cancer Research, vol. 13, no. 9, pp. 2784–2794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Wu, H. E. Zhau, W.-C. Huang et al., “cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis,” Oncogene, vol. 26, no. 35, pp. 5070–5077, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. E. D. Martinez and M. Danielsen, “Loss of androgen receptor transcriptional activity at the G1/S transition,” The Journal of Biological Chemistry, vol. 277, no. 33, pp. 29719–29729, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. I. V. Litvinov, D. J. Vander Griend, L. Antony et al., “Androgen receptor as a licensing factor for DNA replication in androgen-sensitive prostate cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 41, pp. 15085–15090, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Wu, B. Sunkel, Z. Chen et al., “Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer,” Nucleic Acids Research, vol. 42, no. 6, pp. 3607–3622, 2014. View at Publisher · View at Google Scholar
  77. Q. Jin, L.-R. Yu, L. Wang et al., “Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation,” The EMBO Journal, vol. 30, no. 2, pp. 249–262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Calo and J. Wysocka, “Modification of enhancer chromatin: what, how, and why?” Molecular Cell, vol. 49, no. 5, pp. 825–837, 2013. View at Publisher · View at Google Scholar
  79. S. Shah, S. Prasad, and K. E. Knudsen, “Targeting pioneering factor and hormone receptor cooperative pathways to suppress tumor progression,” Cancer Research, vol. 72, no. 5, pp. 1248–1259, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. F. Hayakawa, M. Towatari, Y. Ozawa, A. Tomita, M. L. Privalsky, and H. Saito, “Functional regulation of GATA-2 by acetylation,” Journal of Leukocyte Biology, vol. 75, no. 3, pp. 529–540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. C. R. Vakoc, D. L. Letting, N. Gheldof et al., “Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1,” Molecular Cell, vol. 17, no. 3, pp. 453–462, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Sahu, M. Laakso, K. Ovaska et al., “Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer,” The EMBO Journal, vol. 30, no. 19, pp. 3962–3976, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Wang, I. Garcia-Bassets, C. Benner et al., “Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA,” Nature, vol. 474, no. 7351, pp. 390–394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. V. Theodorou, R. Stark, S. Menon, and J. S. Carroll, “GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility,” Genome Research, vol. 23, no. 1, pp. 12–22, 2013. View at Publisher · View at Google Scholar
  85. M. Bohm, W. J. Locke, R. L. Sutherland, J. G. Kench, and S. M. Henshall, “A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes,” Oncogene, vol. 28, no. 43, pp. 3847–3856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. R. B. Shah, R. Mehra, A. M. Chinnaiyan et al., “Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program,” Cancer Research, vol. 64, no. 24, pp. 9209–9216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. G. Li, P. Mathew, J. Yang et al., “Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms,” The Journal of Clinical Investigation, vol. 118, no. 8, pp. 2697–2710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. Z. Chen, C. Zhang, D. Wu et al., “Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth,” The EMBO Journal, vol. 30, no. 12, pp. 2405–2419, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Malik and R. G. Roeder, “The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation,” Nature Reviews Genetics, vol. 11, no. 11, pp. 761–772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Li, M. M. Ittmann, G. Ayala et al., “The emerging role of the PI3-K-Akt pathway in prostate cancer progression,” Prostate Cancer and Prostatic Diseases, vol. 8, no. 2, pp. 108–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. P. K. Majumder and W. R. Sellers, “Akt-regulated pathways in prostate cancer,” Oncogene, vol. 24, no. 50, pp. 7465–7474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Jin, S. Irshad, W. Yu et al., “ERK and AKT signaling drive MED1 overexpression in prostate cancer in association with elevated proliferation and tumorigenicity,” Molecular Cancer Research, vol. 11, no. 7, pp. 736–747, 2013. View at Publisher · View at Google Scholar