Table of Contents
Advances in Artificial Neural Systems
Volume 2010, Article ID 309841, 11 pages
http://dx.doi.org/10.1155/2010/309841
Research Article

Comparison of Artificial Neural Network with Logistic Regression as Classification Models for Variable Selection for Prediction of Breast Cancer Patient Outcomes

1THEMIS, 60 avenue Rockefeller, 69 008 LYON, France
2ICTA-PM, 11 rue du Bocage, 21 121 Fontaine les Dijon, France
3Laboratoire ERIC, Ecole Polytechnique Universitaire de Lyon 1, 69622 Villeurbanne, France
4School of Computing and Mathematical Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
5Oncology Department, Pfizer France, Avenue Dr. Lannelongue, 75014 Paris, France
6Centre Léon Bérard, 28 rue Laennec, 69373 Lyon Cedex 08, France

Received 4 February 2010; Accepted 5 June 2010

Academic Editor: Tomasz G. Smolinski

Copyright © 2010 Valérie Bourdès et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. G. Lisboa, “A review of evidence of health benefit from artificial neural networks in medical intervention,” Neural Networks, vol. 15, no. 1, pp. 11–39, 2002. View at Google Scholar · View at Scopus
  2. E. Biganzoli, P. Boracchi, D. Coradini, M. G. Daidone, and E. Marubini, “Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors,” Annals of Oncology, vol. 14, no. 10, pp. 1484–1493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini, “Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach,” Statistics in Medicine, vol. 17, no. 10, pp. 1169–1186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Biganzoli, P. Boracchi, and E. Marubini, “A general framework for neural network models on censored survival data,” Neural Networks, vol. 15, no. 2, pp. 209–218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. D. Dolgobrodov, R. Marshall, P. Moore, R. Bittern, R. J. C. Steele, and A. Cuschieri, “e-science and artificial neural networks in cancer management,” Concurrency and Computation: Practice and Experience, vol. 19, no. 2, pp. 251–263, 2007. View at Google Scholar
  6. H. B. Burke, P. H. Goodman, D. B. Rosen et al., “Artificial neural networks improve the accuracy of cancer survival prediction,” Cancer, vol. 79, no. 4, pp. 857–862, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. G. Lisboa, H. Wong, P. Harris, and R. Swindell, “A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer,” Artificial Intelligence in Medicine, vol. 28, no. 1, pp. 1–25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, John Wiley & Sons, New York, NY, USA, 2nd edition, 2000.
  9. R. Voss, P. Cullen, H. Schulte, and G. Assmann, “Prediction of risk of coronary events in middle-aged men in the Prospective Cardiovascular Münster Study (PROCAM) using neural networks,” International Journal of Epidemiology, vol. 31, no. 6, pp. 1253–1262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zeng and H. J. Trussell, “Feature selection using a mixed-norm penalty function,” in Proceedings of the International Conference on Image Processing (ICIP '06), October 2006.
  11. H. White, “Learning in artificial neural networks: a statistical approach,” Neural Computation, vol. 1, pp. 425–464, 1989. View at Google Scholar
  12. W. G. Baxt, “Application of artificial neural networks to clinical medicine,” Lancet, vol. 346, no. 8983, pp. 1135–1138, 1995. View at Google Scholar · View at Scopus
  13. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989. View at Google Scholar · View at Scopus
  14. D. M. Kline and V. L. Berardi, “Revisiting squared-error and cross-entropy functions for training neural network classifiers,” Neural Computing and Applications, vol. 14, no. 4, pp. 310–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. M. Ravdin and G. M. Clark, “A practical application of neural network analysis for predicting outcome of individual breast cancer patients,” Breast Cancer Research and Treatment, vol. 22, no. 3, pp. 285–293, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. P. M. Ravdin, G. M. Clark, S. G. Hilsenbeck et al., “A demonstration that breast cancer recurrence can be predicted by Neural Network Analysis,” Breast Cancer Research and Treatment, vol. 21, no. 1, pp. 47–53, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Le Goff, L. Lavayssière, J. Rouëssé, and F. Spyratos, “Nonlinear discriminant analysis and prognostic factor classification in node-negative primary breast cancer using probabilistic neural networks,” Anticancer Research, vol. 20, no. 3, pp. 2213–2218, 2000. View at Google Scholar · View at Scopus