Table of Contents
Advances in Artificial Neural Systems
Volume 2011, Article ID 189368, 9 pages
http://dx.doi.org/10.1155/2011/189368
Research Article

An Optimal Implementation on FPGA of a Hopfield Neural Network

1TIMA Laboratory, 46 avenue Félix Viallet, 38031 Grenoble, France
2Department of Computer Engineering, University of Balamand, Tripoli, Lebanon
3Electrical and Electronics Department, Faculty of Engineering I, Lebanese University, El Arz Street, El Kobbe, Tripoli, Lebanon
4Lebanese French University of Technology and Applied Sciences, Tripoli, Lebanon

Received 3 March 2011; Revised 30 April 2011; Accepted 4 June 2011

Academic Editor: Paolo Del Giudice

Copyright © 2011 W. Mansour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Leiner, V. Q. Lorena, T. M. Cesar, and M. V. Lorenzo, “Hardware architecture for FPGA implementation of a neural network and its application in images processing,” in Proceedings of the 5th Meeting of the Electronics, Robotics and Automotive Mechanics Conference (CERMA '08), pp. 405–410, October 2008. View at Publisher · View at Google Scholar
  2. S. Saif, H. M. Abbas, S. M. Nassar, and A. A. Wahdan, “An FPGA implementation of a hopfield optimized block truncation coding,” in Proceedings of the 6th International Workshop on System on Chip for Real Time Applications (IWSOC '06), pp. 169–172, December 2006. View at Publisher · View at Google Scholar
  3. S. Saif, H. M. Abbas, S. M. Nassar, and A. A. Wahdan, “An FPGA implementation of a neural optimization of block truncation coding for image/video compression,” Microprocessors and Microsystems, vol. 31, no. 8, pp. 477–486, 2007. View at Publisher · View at Google Scholar
  4. M. Stepanova and F. Lin, “A hopfield neural classifier and its FPGA implementation for identification of symmetrically structured DNA motifs,” Journal of VLSI Signal Processing, vol. 48, no. 3, pp. 239–254, 2007. View at Publisher · View at Google Scholar
  5. Y. Maeda and Y. Fukuda, “FPGA implementation of pulse density hopfield neural network,” in Proceedings of the International Joint Conference on Neural Networks, Orlando, Fla, USA, August 2007.
  6. J. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, 1982. View at Google Scholar
  7. R. A. Ayoubi and M. A. Bayoumi, “An efficient implementation of multi-layer perceptron on mesh architecture,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '02), vol. 2, pp. 109–112, May 2002.
  8. R. A. Ayoubi, H. A. Ziade, and M. A. Bayoumi, “Hopfield associative memory on mesh,” in Proceedings of the IEEE International Symposium on Cirquits and Systems, pp. 800–803, May 2004.
  9. J. Hwang and S. Kung, “Parallel algorithms/architectures neural networks,” Journal of VLSI Signal Processing, 1982. View at Google Scholar
  10. K. Kim and V. K. P. Kumar, “Efficient implementation of neural networks on hypercube SIMD arrays,” in Proceedings of the International Joint Conference on Neural Networks, vol. 2, pp. 614–617, Washington, DC, USA, 1989.
  11. Y. Kim, M. J. Noh, T. D. Han, and S. D. Kim, “Mapping of neutral networks onto the memory processor integrated architecture,” Neutral Networks, no. 11, pp. 1083–1098, 1988. View at Google Scholar
  12. S. Y. Kung, “Parallel architectures for artificial neural nets,” in Proceedings of the International Conference on Systolic Arrays, vol. 1, pp. 163–174, San Diego, DC, Calif, USA, 1988.
  13. S. Y. Kung and J. N. Hwang, “A unified systolic architecture for artificial neural networks,” Journal of Parallel and Distributed Computing, vol. 6, no. 2, pp. 358–387, 1989. View at Google Scholar
  14. W. M. Lin, V. K. Prasanna, and K. W. Przytula, “Algorithmic mapping of neural network models onto parallel SIMD machines,” IEEE Transactions on Computers, vol. 40, no. 12, pp. 1390–1401, 1991. View at Publisher · View at Google Scholar
  15. Q. M. Malluhi, M. A. Bayoumi, and T. R. N. Rao, “Efficient mapping of ANNs on hypercube massively parallel machines,” IEEE Transactions on Computers, vol. 44, no. 6, pp. 769–779, 1995. View at Publisher · View at Google Scholar
  16. S. Shams and J. L. Gaudiot, “Implementing regularly structured neural networks on the DREAM Machine,” IEEE Transactions on Neural Networks, vol. 6, no. 2, pp. 407–421, 1995. View at Publisher · View at Google Scholar · View at PubMed
  17. S. Shams and K. W. Przytula, “Mapping of neural networks onto programmable parallel machines,” in Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2613–2617, New Orleans, La, USA, May 1990.