Table of Contents
Advances in Artificial Neural Systems
Volume 2011, Article ID 431357, 9 pages
Research Article

Adaptive Neurofuzzy Inference System-Based Pollution Severity Prediction of Polymeric Insulators in Power Transmission Lines

1Department of Electrical Engineering, K. S. Rangasamy College of Technology, Tiruchengode 637 215, India
2Department of Electrical Engineering, SonaPERT R&D Centre, Sona College of Technology, Salem 636 005, India

Received 11 January 2011; Revised 13 April 2011; Accepted 16 June 2011

Academic Editor: Christian Mayr

Copyright © 2011 C. Muniraj and S. Chandrasekar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents the prediction of pollution severity of the polymeric insulators used in power transmission lines using adaptive neurofuzzy inference system (ANFIS) model. In this work, laboratory-based pollution performance tests were carried out on 11 kV silicone rubber polymeric insulator under AC voltage at different pollution levels with sodium chloride as a contaminant. Leakage current was measured during the laboratory tests. Time domain and frequency domain characteristics of leakage current, such as mean value, maximum value, standard deviation, and total harmonics distortion (THD), have been extracted, which jointly describe the pollution severity of the polymeric insulator surface. Leakage current characteristics are used as the inputs of ANFIS model. The pollution severity index “equivalent salt deposit density” (ESDD) is used as the output of the proposed model. Results of the research can give sufficient prewarning time before pollution flashover and help in the condition based maintenance (CBM) chart preparation.