Table of Contents
Advances in Artificial Neural Systems
Volume 2013, Article ID 181895, 12 pages
http://dx.doi.org/10.1155/2013/181895
Research Article

Comparison of Artificial Neural Network Architecture in Solving Ordinary Differential Equations

Department of Mathematics, National Institute of Technology, Rourkela, Odisha-769008, India

Received 8 August 2013; Revised 31 October 2013; Accepted 31 October 2013

Academic Editor: Ping Feng Pai

Copyright © 2013 Susmita Mall and S. Chakraverty. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. J. Ricardo, A Modern Introduction to Differential Equations, Elsevier, 2nd edition, 2009.
  2. H. Lee and I. S. Kang, “Neural algorithm for solving differential equations,” Journal of Computational Physics, vol. 91, no. 1, pp. 110–131, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. A. J. Meade Jr. and A. A. Fernandez, “The numerical solution of linear ordinary differential equations by feedforward neural networks,” Mathematical and Computer Modelling, vol. 19, no. 12, pp. 1–25, 1994. View at Google Scholar · View at Scopus
  4. A. J. Meade Jr. and A. A. Fernandez, “Solution of nonlinear ordinary differential equations by feedforward neural networks,” Mathematical and Computer Modelling, vol. 20, no. 9, pp. 19–44, 1994. View at Google Scholar · View at Scopus
  5. I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary and partial differential equations,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 987–1000, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. I. E. Lagaris, A. C. Likas, and D. G. Papageorgiou, “Neural-network methods for boundary value problems with irregular boundaries,” IEEE Transactions on Neural Networks, vol. 11, no. 5, pp. 1041–1049, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. D. R. Parisi, M. C. Mariani, and M. A. Laborde, “Solving differential equations with unsupervised neural networks,” Chemical Engineering and Processing, vol. 42, no. 8-9, pp. 715–721, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Malek and R. Shekari Beidokhti, “Numerical solution for high order differential equations using a hybrid neural network-Optimization method,” Applied Mathematics and Computation, vol. 183, no. 1, pp. 260–271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Choi and J.-H. Lee, “Comparison of generalization ability on solving differential equations using backpropagation and reformulated radial basis function networks,” Neurocomputing, vol. 73, no. 1–3, pp. 115–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. S. Yazdi, M. Pakdaman, and H. Modaghegh, “Unsupervised kernel least mean square algorithm for solving ordinary differential equations,” Neurocomputing, vol. 74, no. 12-13, pp. 2062–2071, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Selvaraju and J. Abdul Samant, “Solution of matrix Riccati differential equation for nonlinear singular system using neural networks,” International Journal of Computer Applications, vol. 29, pp. 48–54, 2010. View at Google Scholar
  12. S. He, K. Reif, and R. Unbehauen, “Multilayer neural networks for solving a class of partial differential equations,” Neural Networks, vol. 13, no. 3, pp. 385–396, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kumar and N. Yadav, “Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey,” Computers and Mathematics with Applications, vol. 62, no. 10, pp. 3796–3811, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. I. G. Tsoulos, D. Gavrilis, and E. Glavas, “Solving differential equations with constructed neural networks,” Neurocomputing, vol. 72, no. 10–12, pp. 2385–2391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Jianyu, L. Siwei, Q. Yingjian, and H. Yaping, “Numerical solution of elliptic partial differential equation using radial basis function neural networks,” Neural Networks, vol. 16, no. 5-6, pp. 729–734, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Shirvany, M. Hayati, and R. Moradian, “Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations,” Applied Soft Computing Journal, vol. 9, no. 1, pp. 20–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Mai-Duy and T. Tran-Cong, “Numerical solution of differential equations using multiquadric radial basis function networks,” Neural Networks, vol. 14, no. 2, pp. 185–199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Leephakpreeda, “Novel determination of differential-equation solutions: universal approximation method,” Journal of Computational and Applied Mathematics, vol. 146, no. 2, pp. 443–457, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Franke and R. Schaback, “Solving partial differential equations by collocation using radial basis functions,” Applied Mathematics and Computation, vol. 93, no. 1, pp. 73–82, 1998. View at Google Scholar · View at Scopus
  20. N. Smaoui and S. Al-Enezi, “Modelling the dynamics of nonlinear partial differential equations using neural networks,” Journal of Computational and Applied Mathematics, vol. 170, no. 1, pp. 27–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. I. G. Tsoulos and I. E. Lagaris, “Solving differential equations with genetic programming,” Genetic Programming and Evolvable Machines, vol. 7, no. 1, pp. 33–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. K. S. McFall and J. R. Mahan, “Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions,” IEEE Transactions on Neural Networks, vol. 20, no. 8, pp. 1221–1233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Hoda and H. A. Nagla, “Neural network methods for mixed boundary value problems,” International Journal of Nonlinear Science, vol. 11, pp. 312–316, 2011. View at Google Scholar
  24. J. M. Zurada, Introduction to Artificial Neural Network, West Publishing, 1994.
  25. S. Haykin, Neural Networks a Comprehensive Foundation, Prentice Hall, New York, NY, USA, 1999.
  26. S. Chakraverty, V. P. Singh, and R. K. Sharma, “Regression based weight generation algorithm in neural network for estimation of frequencies of vibrating plates,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 33–36, pp. 4194–4202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. V. P. Singh, S. Chakraverty, R. K. Sharma, and G. K. Sharma, “Modeling vibration frequencies of annular plates by regression based neural network,” Applied Soft Computing Journal, vol. 9, no. 1, pp. 439–447, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Mall and S. Chakraverty, “Regression Based Neural network training for the solution of ordinary differential equations,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, pp. 136–149, 2013. View at Publisher · View at Google Scholar