Table of Contents
Advances in Artificial Neural Systems
Volume 2014, Article ID 595462, 10 pages
http://dx.doi.org/10.1155/2014/595462
Research Article

Downscaling Statistical Model Techniques for Climate Change Analysis Applied to the Amazon Region

1Climate Science Program, Federal University of Rio Grande do Norte, 59082-200 Natal, RN, Brazil
2Instituto Nacional de Pesquisas Espaciais (INPE), Avenida dos Astronautas, 1.758 Jardim da Granja, 12227-010 São José dos Campos, SP, Brazil
3World Wild Life Fund Brazil (WWF), SHIS EQ QL 6/8 Conjunto, 71620-430 Brasilia, DF, Brazil

Received 8 November 2013; Revised 25 January 2014; Accepted 27 January 2014; Published 29 May 2014

Academic Editor: Ozgur Kisi

Copyright © 2014 David Mendes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Costa and G. F. Pires, “Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation,” International Journal of Climatology, vol. 30, no. 13, pp. 1970–1979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Marengo, C. A. Nobre, R. A. Betts, P. M. Cox, G. Sampaio, and L. Salazar, “Global warming and climate change in Amazonia: climate-vegetation feedback and impacts on water resources,” in Amazonia and Global Change, M. Keller, M. Bustamante, J. Gash et al., Eds., vol. 186 of Geophysical Monograph Series, pp. 273–292, AGU, Washington, DC, USA, 2009. View at Publisher · View at Google Scholar
  3. S. Baidya Roy and R. Avissar, “Impact of land use/land cover change on regional hydrometeorology in Amazonia,” Journal of Geophysical Research D, vol. 107, no. 20, pp. 4–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. A. W. Gandu, J. C. P. Cohen, and J. R. S. de Souza, “Simulation of deforestation in eastern Amazonia using a high-resolution model,” Theoretical and Applied Climatology, vol. 78, no. 1–3, pp. 123–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Avissar, P. L. Silva Dias, M. A. Silva Dias, and C. A. Nobre, “The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA). Insights and future research needs,” Journal of Geophysical Research, vol. 107, no. 20, pp. 1–6, 2002. View at Publisher · View at Google Scholar
  6. M. D. Oyama and C. A. Nobre, “A new climate-vegetation equilibrium state for Tropical South America,” Geophysical Research Letters, vol. 30, no. 23, p. 2199, 2003. View at Publisher · View at Google Scholar
  7. R. R. da Silva, D. Werth, and R. Avissar, “Regional impacts of future land-cover changes on the Amazon basin wet-season climate,” Journal of Climate, vol. 21, no. 6, pp. 1153–1170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Victoria, L. Matinelli, J. Moraes et al., “Surface air temperature variations in the Amazon region and its border during this century,” Journal of Climate, vol. 11, pp. 1105–1110, 1998. View at Publisher · View at Google Scholar
  9. J. A. Marengo, C. A. Nobre, J. Tomasella, M. F. Cardoso, and M. D. Oyama, “Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 363, no. 1498, pp. 1773–1778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Marengo, C. A. Nobre, J. Tomasella et al., “The drought of Amazonia in 2005,” Journal of Climate, vol. 21, no. 3, pp. 495–516, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Haylock, G. C. Cawley, C. Harpham, R. L. Wilby, and C. M. Goodess, “Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios,” International Journal of Climatology, vol. 26, no. 10, pp. 1397–1415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Marengo, W. R. Soares, C. Saulo, and M. Nicolini, “Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: characteristics and temporal variability,” Journal of Climate, vol. 17, pp. 2261–2280, 2004. View at Google Scholar
  13. H. Matsuyama, J. A. Marengo, G. O. Obregon, and C. A. Nobre, “Spatial and temporal variabilities of rainfall in tropical South America as derived from climate prediction Center merged analysis of precipitation,” International Journal of Climatology, vol. 22, no. 2, pp. 175–195, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Marengo, “Interdecadal variability and trends of rainfall across the Amazon basin,” Theoretical and Applied Climatology, vol. 78, no. 1-3, pp. 79–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Valverde and J. A. Marengo, “Mudanças na Circulação Atmosférica sobre a América do Sul para cenários futuros de clima projetados pelos modelos globais do IPCC AR4,” Revista Brasileira de Meteorologia, vol. 25, pp. 125–145, 2010. View at Google Scholar
  16. P. M. Cox, P. P. Harris, C. Huntingford et al., “Increasing risk of Amazonian drought due to decreasing aerosol pollution,” Nature, vol. 453, no. 7192, pp. 212–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Mendes and J. A. Marengo, “Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios,” Theoretical and Applied Climatology, vol. 100, no. 3, pp. 413–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Nobre, M. Malagutti, D. F. Urbano, R. A. F. de Almeida, and E. Giarolla, “Amazon deforestation and climate change in a coupled model simulation,” Journal of Climate, vol. 22, no. 21, pp. 5686–5697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. C. Espinoza, J. Ronchail, M. Lengaigne et al., “Revisiting wintertime cold air intrusions at the east of the Andes: propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns,” Climate Dynamics, vol. 41, no. 7-8, pp. 1983–2002, 2012. View at Publisher · View at Google Scholar
  20. J. P. Boulanger, F. Martinez, and E. C. Segura, “Projection of future climate change conditions using IPCC simulations, neural networks and bayesian statistics—part 1: temperature mean state and seasonal cycle in South America,” Climate Dynamics, vol. 27, no. 2-3, pp. 233–259, 2006. View at Publisher · View at Google Scholar
  21. L. A. Vincent, T. C. Peterson, V. R. Barros et al., “Observed trends in indices of daily temperature extremes in South America 1960–2000,” Journal of Climate, vol. 18, no. 23, pp. 5011–5023, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, John Wiley & Sons, New York, NY, USA, 1973.
  23. M. New, B. Hewitson, D. B. Stephenson et al., “Evidence of trends in daily climate extremes over southern and west Africa,” Journal of Geophysical Research D: Atmospheres, vol. 111, no. 14, Article ID D14102, 2006. View at Publisher · View at Google Scholar · View at Scopus