Table of Contents Author Guidelines Submit a Manuscript
Advances in Acoustics and Vibration
Volume 2012, Article ID 268595, 9 pages
http://dx.doi.org/10.1155/2012/268595
Research Article

Nonsmooth Modeling of Vibro-Impacting Euler-Bernoulli Beam

1Department of Mechanical Engineering, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502205, India
2MSC Software, 101 North Brand Boulevard, Suite 900 Glendale, Santa Ana, CA 91203, USA
3Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1

Received 3 April 2012; Accepted 17 June 2012

Academic Editor: Abul Azad

Copyright © 2012 C. P. Vyasarayani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Wagg and S. R. Bishop, “Application of non-smooth modelling techniques to the dynamics of a flexible impacting beam,” Journal of Sound and Vibration, vol. 256, no. 5, pp. 803–820, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Bao, S. Goyal, L. J. Leu, and S. Mukherjee, “The role of beam flexibility and ground contact model in the clattering of deformable beams,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 126, no. 2, pp. 421–425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Schiehlen and R. Seifried, “Three approaches for elastodynamic contact in multibody systems,” Multibody System Dynamics, vol. 12, no. 1, pp. 1–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. H. C. Tsai and M. K. Wu, “Methods to compute dynamic response of a cantilever with a stop to limit motion,” Computers and Structures, vol. 58, no. 5, pp. 859–867, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Wang and J. Kim, “New analysis method for a thin beam impacting against a stop based on the full continuous model,” Journal of Sound and Vibration, vol. 191, no. 5, pp. 809–823, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Wang and J. Kim, “The dynamic analysis of a thin beam impacting against a stop of general three-dimensional geometry,” Journal of Sound and Vibration, vol. 203, no. 2, pp. 237–249, 1997. View at Google Scholar · View at Scopus
  7. D. J. Wagg, “A note on coefficient of restitution models including the effects of impact induced vibration,” Journal of Sound and Vibration, vol. 300, no. 3–5, pp. 1071–1078, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Wagg, “A note on using the collocation method for modelling the dynamics of a flexible continuous beam subject to impacts,” Journal of Sound and Vibration, vol. 276, no. 3-5, pp. 1128–1134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Wagg, “A note on modelling multi-degree-of-freedom vibroimpact systems using coefficient of restitution models,” Journal of Sound and Vibration, vol. 236, no. 1, pp. 176–184, 2000. View at Publisher · View at Google Scholar
  10. E. L. B. Van De Vorst, M. F. Heertjes, D. H. Van Campen, A. De Kraker, and R. H. B. Fey, “Experimental and numerical analysis of the steady state behaviour of a beam system with impact,” Journal of Sound and Vibration, vol. 212, no. 2, pp. 321–336, 1998. View at Google Scholar · View at Scopus
  11. P. Metallidis and S. Natsiavas, “Vibration of a continuous system with clearance and motion constraints,” International Journal of Non-Linear Mechanics, vol. 35, no. 4, pp. 675–690, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Knudsen and A. R. Massih, “Vibro-impact dynamics of a periodically forced beam,” Journal of Pressure Vessel Technology, Transactions of the ASME, vol. 122, no. 2, pp. 210–221, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Turner, “Non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions,” Journal of Sound and Vibration, vol. 275, no. 1-2, pp. 177–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Lin, N. Qiao, and H. Yuying, “Bifurcations and chaos in a forced cantilever system with impacts,” Journal of Sound and Vibration, vol. 296, no. 4-5, pp. 1068–1078, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. E. K. Ervin and J. A. Wickert, “Experiments on a beam-rigid body structure repetitively impacting a rod,” Nonlinear Dynamics, vol. 50, no. 3, pp. 701–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. K. Ervin and J. A. Wickert, “Repetitive impact response of a beam structure subjected to harmonic base excitation,” Journal of Sound and Vibration, vol. 307, no. 1-2, pp. 2–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. J. L. Fegelman and K. Grosh, “Dynamics of a flexible beam contacting a linear spring at low frequency excitation: experiment and analysis,” Journal of Vibration and Acoustics, Transactions of the ASME, vol. 124, no. 2, pp. 237–249, 2002. View at Google Scholar · View at Scopus
  18. C. P. Vyasarayani, J. McPhee, and S. Birkett, “Modeling impacts between a continuous system and a rigid obstacle using coefficient of restitution,” Journal of Applied Mechanics, Transactions ASME, vol. 77, no. 2, Article ID 021008, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. D. Murphy and T. M. Morrison, “Grazing instabilities and post-bifurcation behavior in an impacting string,” Journal of the Acoustical Society of America, vol. 111, no. 2, pp. 884–892, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. H. Qin and X. Q. He, “Variational principles, FE and MPT for analysis of non-linear impact-contact problems,” Computer Methods in Applied Mechanics and Engineering, vol. 122, no. 3-4, pp. 205–222, 1995. View at Google Scholar · View at Scopus
  21. I. Huněk, “On a penalty formulation for contact-impact problems,” Computers and Structures, vol. 48, no. 2, pp. 193–203, 1993. View at Google Scholar · View at Scopus
  22. C. Budd and F. Dux, “Chattering and related behaviour in impact oscillators,” Philosophical Transactions: Physical Sciences and Engineering, vol. 347, no. 1683, pp. 365–389, 1994. View at Google Scholar
  23. J. P. Cusumano and B. Y. Bai, “Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact oscillator,” Chaos, Solitons and Fractals, vol. 3, no. 5, pp. 515–535, 1993. View at Google Scholar · View at Scopus
  24. F. C. Moon and S. W. Shaw, “Chaotic vibrations of a beam with non-linear boundary conditions,” International Journal of Non-Linear Mechanics, vol. 18, no. 6, pp. 465–477, 1983. View at Google Scholar · View at Scopus
  25. S. W. Shaw, “Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment,” Journal of Sound and Vibration, vol. 99, no. 2, pp. 199–212, 1985. View at Google Scholar · View at Scopus