Table of Contents
Advances in Biology
Volume 2014 (2014), Article ID 369213, 6 pages
http://dx.doi.org/10.1155/2014/369213
Research Article

In Silico Identification and Characterization of Potential Drug Targets in Bovine Herpes Virus 4, Causing Bovine Mastitis

Department of Microbiology and Biotechnology, Karnatak University, Dharwad, Karnataka 580003, India

Received 15 May 2014; Revised 18 July 2014; Accepted 21 July 2014; Published 7 August 2014

Academic Editor: Brenda A. Wilson

Copyright © 2014 Mahantesh M. Kurjogi and Basappa B. Kaliwal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Watts, “Etiological agents of bovine mastitis,” Veterinary Microbiology, vol. 16, no. 1, pp. 41–66, 1988. View at Google Scholar · View at Scopus
  2. O. M. Radostits, D. C. Blood, and C. C. Gay, “Mastitis,” in Veterinary Medicine, Bailliëre Tindal, London, UK, 1994. View at Google Scholar
  3. J. D. Miltenburg, D. de Lange, A. P. P. Crauwels et al., “Incidence of clinical mastitis in a random sample of dairy herds in the Southern Netherlands,” Veterinary Record, vol. 139, no. 9, pp. 204–207, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Wedderkopp, “Haemophilus somnus—unlikely to be a causative microbiological agent in bovine clinical mastitis in denmark,” Acta Veterinaria Scandinavica, vol. 38, no. 2, pp. 193–195, 1997. View at Google Scholar · View at Scopus
  5. H. W. Barkema, Y. H. Schukken, T. J. G. M. Lam et al., “Incidence of clinical mas titis in dairy herds grouped in three categories by bulk milk somatic cell count,” Journal of Dairy Science, vol. 81, no. 2, pp. 411–419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Pfutzner, “Mastitiden: mycoplasma infection,” in Euter—und Gesäugekrankheiten, K. Wendt, H. Bostedt, H. Mielke, and H. W. Fuchs, Eds., pp. 410–416, Gustav Fischer, Stuttgart, Germany, 1994. View at Google Scholar
  7. K. Wendt, “Mastitiden: hefen- und plizeinfectionen,” in Euter- und Gesäugekrankheiten, K. Wendt, H. Bostedt, H. Mielke, and H.-W. Fuchs, Eds., pp. 416–422, Gustav Fisher, 1994. View at Google Scholar
  8. E. VanOpdenbosch, G. Wellemans, L. A. A. Ooms, and A.-D. A. Y. Degryse, “BHV4 (bovine herpes virus 4) related disorders in Belgian cattle: a study of two problem herds,” Veterinary Research Communications, vol. 12, no. 4-5, pp. 347–353, 1988. View at Publisher · View at Google Scholar
  9. M. A. Mahmoud and S. A. Ahmed, “Prevalence of bovine herpesvirus-1 in sheep and goats in Egypt,” Global Veterinaria, vol. 3, no. 6, pp. 472–479, 2009. View at Google Scholar
  10. F. A. Osorio and D. E. Reed, “Experimental inoculation of cattle with bovine herpesvirus-4: evidence for a lymphoid-associated persistent infection,” American Journal of Veterinary Research, vol. 44, no. 6, pp. 975–980, 1983. View at Google Scholar · View at Scopus
  11. L. A. Krogman and J. P. McAdaragh, “Recrudescence of bovine herpesvirus-5 in experimentally infected calves,” American Journal of Veterinary Research, vol. 43, no. 2, pp. 336–338, 1982. View at Google Scholar · View at Scopus
  12. D. E. Reed, T. J. Langpap, and M. A. Anson, “Characterization of herpesviruses isolated from lactating dairy cows with mammary pustular dermatitis,” American Journal of Veterinary Research, vol. 38, no. 10, pp. 1631–1634, 1977. View at Google Scholar · View at Scopus
  13. S. Cavirani, G. Allegri, and C. F. Flammini, “Isolation of bovid herpesvirus-4 (BHV-4) from cows affected by chronic ulcerative mammary dermatitis,” Estratto da Selezione Veterinaria, vol. 31, pp. 1251–1260, 1990. View at Google Scholar
  14. G. J. Wellenberg, W. H. M. van der Poel, T. J. K. van der Vorst et al., “Bovine herpesvirus 4 in bovine clinical mastitis,” Veterinary Record, vol. 147, no. 8, pp. 222–225, 2000. View at Google Scholar · View at Scopus
  15. R. N. Zadoks, H. G. Allore, H. W. Barkema et al., “Cow- and quarter-level risk factors for Streptococcus uberis and Staphylococcus aureus mastitis,” Journal of Dairy Science, vol. 84, no. 12, pp. 2649–2663, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. Kurjogi and B. B. Kaliwal, “Prevalence and antibiotic susceptibility of bacteria isolated from Bovine mastitis,” Advances in Applied Science Research, vol. 2, no. 6, pp. 229–235, 2011. View at Google Scholar
  17. H. Ali, G. P. Keefe, and A. Cepica, “Bovine herp esvirus-4, a potential cause of mastitis in Canadian Dairy Cows,” British Journal of Dairy Sciences, vol. 2, no. 3, pp. 31–34, 2011. View at Google Scholar
  18. R. N. Zadoks, H. G. Allore, H. W. Barkema et al., “Cow- and quarter-level risk factors for Streptococcus uberis and Staphylococcus aureus mastitis,” Journal of Dairy Science, vol. 84, no. 12, pp. 2649–2663, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Gaetano Donofrio, A. Capocefalo, V. Franceschi, S. Price, S. Cavirani, and I. M. Sheldon, “The chemokine IL8 is up-regulated in bovine endometrial stromal cells by the BoHV-4 IE2 gene product, ORF50/Rta: a step ahead toward a mechanism for BoHV-4 induced endometritis,” Biology of Reproduction, vol. 83, no. 6, pp. 919–928, 2010. View at Publisher · View at Google Scholar
  20. R. Zhang, H. Ou, and C. Zhang, “DEG: a database of essential genes,” Nucleic Acids Research, vol. 32, pp. D271–D272, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Aravind, D. D. Leipe, and E. V. Koonin, “Toprim—a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins,” Nucleic Acids Research, vol. 26, no. 18, pp. 4205–4213, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Labarga, S. Pilai, F. Valentin, M. Anderson, and R. Lopez, “Web services at EBI,” EMBnetNews, vol. 11, no. 4, pp. 18–23, 2005. View at Google Scholar
  23. J. J. Georrge and V. Umrania, “In silico identification of putative drug targets in Klebsiella pneumonia MGH78578,” Indian Journal of Biotechnology, vol. 10, no. 4, pp. 432–439, 2011. View at Google Scholar · View at Scopus
  24. A. D. Kwong and N. Frenkel, “The herpes simplex virus virion host shutoff function,” Journal of Virology, vol. 63, no. 11, pp. 4834–4839, 1989. View at Google Scholar · View at Scopus
  25. C. A. Smibert, D. C. Johnson, and J. R. Smiley, “Identification and characterization of the virion-induced host shutoff product of herpes simplex virus gene UL41,” Journal of General Virology, vol. 73, no. 2, pp. 467–470, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. P. O'Hare, “The virion transactivator of herpes simplex virus,” Seminars in Virology, vol. 4, no. 3, pp. 145–155, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Liang, B. Chow, Y. Li et al., “Characterization of bovine herpesvirus 1 UL49 homolog gene and product: bovine herpesvirus 1 UL49 homolog is dispensable for virus growth,” Journal of Virology, vol. 69, no. 6, pp. 3863–3867, 1995. View at Google Scholar · View at Scopus
  28. F. Dorange, B. K. Tischer, J. Vautherot, and N. Osterrieder, “Characterization of Marek's disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispensable for virus growth,” Journal of Virology, vol. 76, no. 4, pp. 1959–1970, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Al-Mubarak, J. Simon, C. Coats, J. D. Okemba, M. D. Burton, and S. I. Chowdhury, “Glycoprotein E (gE) specified by bovine herpesvirus type 5 (BHV-5) enables trans-neuronal virus spread and neurovirulence without being a structural component of enveloped virions,” Virology, vol. 365, no. 2, pp. 398–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Hutchinson, H. Browne, V. Wargent et al., “A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH,” Journal of Virology, vol. 66, no. 4, pp. 2240–2250, 1992. View at Google Scholar · View at Scopus
  31. J. F. Kaye, U. A. Gompels, and A. C. Minson, “Glycoprotein H of human cytomegalovirus (HCMV) forms a stable complex with the HCMV UL115 gene product,” Journal of General Virology, vol. 73, no. 10, pp. 2693–2698, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. D. X. Liu, U. A. Gompels, J. Nicholas, and C. Lelliott, “Identification and expression of the human herpesvirus 6 glycoprotein H and interaction with an accessory 40K glycoprotein,” Journal of General Virology, vol. 74, no. 9, pp. 1847–1857, 1993. View at Google Scholar · View at Scopus
  33. W. Lucas and D. M. Knipe, Viral Capsids and Envelopes: Structure and Function, Encyclopedia of Life Sciences, Macmillan, 2002.
  34. A. Dutta, S. K. Singh, P. Ghosh, R. Mukherjee, S. Mitter, and D. Bandyopadhyay, “In silico identification of potential therapeutic targets in the human pathogen helicobacter pylori,” In Silico Biology, vol. 6, no. 1-2, pp. 43–47, 2006. View at Google Scholar · View at Scopus
  35. S. Singh, B. K. Malik, and D. K. Sharma, “Metabolic pathway analysis of S. pneumoniae: an in silico approach towards drug-design,” Journal of Bioinformatics and Computational Biology, vol. 5, no. 1, pp. 135–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Barh and A. Kumar, “In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae,” In Silico Biology, vol. 9, no. 4, pp. 225–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Rathi, A. N. Sarangi, and N. Trvedi, “Genome subtraction for novel target definition in Salmonella typhi,” Bioinformation, vol. 4, pp. 143–150, 2009. View at Google Scholar
  38. U. Amineni, D. Pradhan, and H. Marisetty, “In silico identification of common putative drug targets in Leptospira interrogans,” Journal of Chemical Biology, vol. 3, no. 4, pp. 165–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Koteswara Reddy, K. NagmalleshwaraRao, B. Phani Rama Krishna, and S. Arvind, “In silico identification of potential therapeutic targets in Clostridium botulinum by the approach subtractive genomics,” International Journal of Bioinformatics Research, vol. 2, no. 2, pp. 12–16, 2010. View at Google Scholar
  40. E. Ingvar, J. Inge, and R. W. Taylor, Protein Bioinformatics: An Algorithmic Approach to Sequence and Structure Analysis, Wiley India, 2009.
  41. P. C. Bhasme, M. M. Kurjogi, R. D. Sanakal, R. B. Kaliwal, and B. B. Kaliwal, “In silico characterization of putative drug targets in Staphylococcus saprophyticus, causing bovine mastitis,” Bioinformation, vol. 9, no. 7, pp. 339–344, 2013. View at Google Scholar
  42. T. C. Mettenleiter, “Initiation and spread of α-herpesvirus infections,” Trends in Microbiology, vol. 2, no. 1, pp. 2–4, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Karger, A. Saalmuller, F. Tufaro, B. W. Banfield, and T. C. Mettenleiter, “Cell surface proteoglycans are not essential for infection by pseudorabies virus,” Journal of Virology, vol. 69, no. 6, pp. 3482–3489, 1995. View at Google Scholar · View at Scopus
  44. B. Roizman, B. Norrild, C. Chan, and L. Pereira, “Identification and preliminary mapping with monoclonal antibodies of a herpes simplex virus 2 glycoprotein lacking a known type 1 counterpart,” Virology, vol. 133, no. 1, pp. 242–247, 1984. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Jöns, J. M. Dijkstra, and T. C. Mettenleiter, “Glycoproteins M and N of pseudorabies virus form a disulfide-linked complex,” Journal of Virology, vol. 72, no. 1, pp. 550–557, 1998. View at Google Scholar · View at Scopus
  46. S. Koyano, E. C. Mar, F. R. Stamey, and N. Inoue, “Glycoproteins M and N of human herpesvirus 8 form a complex and inhibit cell fusion,” Journal of General Virology, vol. 84, no. 6, pp. 1485–1491, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. C. M. Lake, S. J. Molesworth, and L. M. Hutt-Fletcher, “The Epstein-Barr virus (EBV) gN homolog BLRF1 encodes a 15-kilodalton glycoprotein that cannot be authentically processed unless it is coexpressed with the EBV gM homolog BBRF3,” Journal of Virology, vol. 72, no. 7, pp. 5559–5564, 1998. View at Google Scholar · View at Scopus
  48. M. Mach, B. Kropff, P. Dal Monte, and W. Britt, “Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73),” Journal of Virology, vol. 74, no. 24, pp. 11881–11892, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. S. X. Wu, X. P. Zhu, and G. J. Letchworth, “Bovine herpesvirus 1 glycoprotein M forms a disulfide-linked heterodimer with the U(L)49.5 Protein,” Journal of Virology, vol. 72, no. 4, pp. 3029–3036, 1998. View at Google Scholar · View at Scopus
  50. H. Y. Mchamstien, M. Mchamstien, and B. J. Yeung, “Herpes simplex virus tegument protein V1 elucidation and formation around the nucleocapsid,” Journal of Virology, vol. 28, no. 2, pp. 1262–1274, 2007. View at Google Scholar
  51. M. Mallikrjun Kurjogi, R. Danappa Sanakal, and B. Basaveneppa Kaliwal, “Identification and analysis of putative promoter motifs in bovine herpes virus,” Bioinformation, vol. 8, no. 23, pp. 1167–1170, 2012. View at Publisher · View at Google Scholar