Table of Contents
Advances in Biology
Volume 2014 (2014), Article ID 719723, 15 pages
http://dx.doi.org/10.1155/2014/719723
Review Article

The Brain Derived Neurotrophic Factor and Personality

1Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany
2Center for Economics & Neuroscience, University of Bonn, Germany

Received 5 December 2013; Revised 14 February 2014; Accepted 14 February 2014; Published 27 March 2014

Academic Editor: Allan V. Kalueff

Copyright © 2014 Christian Montag. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bujalkova, S. Straka, and A. Jureckova, “Hippocrates' humoral pathology in nowaday's reflections,” Bratislavske Lekarske Listy, vol. 102, no. 10, pp. 489–492, 2001. View at Google Scholar · View at Scopus
  2. A. Katsambas and S. G. Marketos, “Hippocratic messages for modern medicine (the vindication of Hippocrates),” Journal of the European Academy of Dermatology and Venereology, vol. 21, no. 6, pp. 859–861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Bateson, B. Brilot, and D. Nettle, “Anxiety: an evolutionary approach,” Canadian Journal of Psychiatry, vol. 56, no. 12, pp. 707–715, 2011. View at Google Scholar · View at Scopus
  4. C. Montag, M. Eichner, S. Markett, C. M. Quesada, J. C. Schoene-Bake, and M. Melchers, “An interaction of a NR3C1 polymorphism and antenatal solar activity impacts both hippocampus volume and neuroticism in adulthood,” Frontiers in Human Neuroscience, vol. 7, article 243, 2013. View at Publisher · View at Google Scholar
  5. B. B. Lahey, “Public health significance of neuroticism,” American Psychologist, vol. 64, no. 4, pp. 241–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. W. Allport, Pattern and Growth in Personality, Holt, Rinehart and Winston, New York, NY, USA, 1961.
  7. C. R. Cloninger, D. M. Svrakic, and T. R. Przybeck, “A psychobiological model of temperament and character,” Archives of General Psychiatry, vol. 50, no. 12, pp. 975–990, 1993. View at Google Scholar · View at Scopus
  8. R. R. McCrae and O. P. John, “An introduction to the five-factor model and its applications,” Journal of personality, vol. 60, no. 2, pp. 175–215, 1992. View at Google Scholar · View at Scopus
  9. T. Robinson and S. Marwit, “An investigation of the relationship of personality, coping, and grief intensity among bereaved mothers,” Death Studies, vol. 30, no. 7, pp. 677–696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. Augustine and R. J. Larsen, “Is a trait really the mean of states? Similarities and differences between traditional and aggregate assessments of personality,” Journal of Individual Differences, vol. 33, no. 3, p. 131, 2012. View at Google Scholar
  11. K. Martinowich, H. Manji, and B. Lu, “New insights into BDNF function in depression and anxiety,” Nature Neuroscience, vol. 10, no. 9, pp. 1089–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Panksepp, Affective Neuroscience: the Foundations of Human and Animal Emotions, Oxford University Press, 1998.
  13. J. Panksepp, “Affective neuroscience of the emotional Brain Mind: evolutionary perspectives and implications for understanding depression,” Dialogues in Clinical Neuroscience, vol. 12, no. 4, pp. 533–545, 2010. View at Google Scholar · View at Scopus
  14. J. Panksepp, “Affective consciousness: core emotional feelings in animals and humans,” Consciousness and Cognition, vol. 14, no. 1, pp. 30–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. L. Davis and J. Panksepp, “The brain's emotional foundations of human personality and the Affective Neuroscience Personality Scales,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 9, pp. 1946–1958, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Panksepp, “Cross-Species affective neuroscience decoding of the primal affective experiences of humans and related animals,” PLoS ONE, vol. 6, no. 9, Article ID e21236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Darwin, The Expression of the Emotions in Man and Animals, Oxford University Press, 1998.
  18. C. Holden, “Paul MacLean and the triune brain,” Science, vol. 204, no. 4397, pp. 1066–1068, 1979. View at Google Scholar · View at Scopus
  19. C. Montag, M. Jurkiewicz, and M. Reuter, “The role of the catechol-O-methyltransferase (COMT) gene in personality and related psychopathological disorders,” CNS & Neurological Disorders-Drug Targets, vol. 11, no. 3, pp. 236–250, 2012. View at Google Scholar
  20. C. Montag, M. Reuter, M. Jurkiewicz, S. Markett, and J. Panksepp, “Imaging the structure of the human anxious brain: a review of findings from neuroscientific personality psychology,” Reviews in the Neurosciences, vol. 24, no. 2, pp. 167–190, 2013. View at Google Scholar
  21. P. T. Costa and R. R. McCrae, Neo PI-R Professional Manual, vol. 396, Psychological Assessment Resources, Odessa, Ukraine, 1992.
  22. C. R. Cloninger, “A systematic method for clinical description and classification of personality variants: a proposal,” Archives of General Psychiatry, vol. 44, no. 6, pp. 573–588, 1987. View at Google Scholar · View at Scopus
  23. R. J. Larsen and T. Ketelaar, “Extraversion, neuroticism and susceptibility to positive and negative mood induction procedures,” Personality and Individual Differences, vol. 10, no. 12, pp. 1221–1228, 1989. View at Google Scholar · View at Scopus
  24. C. L. Rusting and R. J. Larsen, “Extraversion, neuroticism, and susceptibility to positive and negative affect: a test of two theoretical models,” Personality and Individual Differences, vol. 22, no. 5, pp. 607–612, 1997. View at Google Scholar · View at Scopus
  25. D. Watson, R. O. M. A. N. Kotov, and W. Gamez, “Basic dimensions of temperament in relation to personality and psychopathology,” Personality and Psychopathology, pp. 7–38, 2006. View at Google Scholar
  26. H. J. Eysenck, Eysenck Personality Inventory, Educational and Industrial Testing Service, San Diego, Calif, USA, 1968.
  27. P. Seeman, “Dopamine receptors and the dopamine hypothesis of schizophrenia,” Synapse, vol. 1, no. 2, pp. 133–152, 1987. View at Google Scholar · View at Scopus
  28. A. Soliman, G. A. O'Driscoll, J. Pruessner et al., “Stress-induced dopamine release in humans at risk of psychosis: a [11C] raclopride PET study,” Neuropsychopharmacology, vol. 33, no. 8, pp. 2033–2041, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. A. Wise and P. P. Rompre, “Brain dopamine and reward,” Annual Review of Psychology, vol. 40, pp. 191–225, 1989. View at Google Scholar · View at Scopus
  30. R. A. Wise, “Dopamine, learning and motivation,” Nature Reviews Neuroscience, vol. 5, no. 6, pp. 483–494, 2004. View at Google Scholar · View at Scopus
  31. R. A. Depue and P. F. Collins, “Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion,” Behavioral and Brain Sciences, vol. 22, no. 3, pp. 491–517, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Bevins, “Novelty seeking and reward: implications for the study of high-risk behaviors,” Current Directions in Psychological Science, vol. 10, no. 6, pp. 189–193, 2001. View at Google Scholar · View at Scopus
  33. M. X. Cohen, J. Young, J.-M. Baek, C. Kessler, and C. Ranganath, “Individual differences in extraversion and dopamine genetics predict neural reward responses,” Cognitive Brain Research, vol. 25, no. 3, pp. 851–861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. Simon, S. Walther, C. J. Fiebach et al., “Neural reward processing is modulated by approach- and avoidance-related personality traits,” NeuroImage, vol. 49, no. 2, pp. 1868–1874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Tsigos and G. P. Chrousos, “Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress,” Journal of Psychosomatic Research, vol. 53, no. 4, pp. 865–871, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A. Schlesser, G. Winokur, and B. M. Sherman, “Hypothalamic-pituitary-adrenal axis activity in depressive illness. Its relationship to classification,” Archives of General Psychiatry, vol. 37, no. 7, pp. 737–743, 1980. View at Google Scholar · View at Scopus
  37. C. Kirschbaum, D. Bartussek, and C. J. Strasburger, “Cortisol responses to psychological stress and correlations with personality traits,” Personality and Individual Differences, vol. 13, no. 12, pp. 1353–1357, 1992. View at Google Scholar · View at Scopus
  38. L. M. Oswald, P. Zandi, G. Nestadt, J. B. Potash, A. E. Kalaydjian, and G. S. Wand, “Relationship between cortisol responses to stress and personality,” Neuropsychopharmacology, vol. 31, no. 7, pp. 1583–1591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Montag, C. J. Fiebach, P. Kirsch, and M. Reuter, “Interaction of 5-HTTLPR and a variation on the oxytocin receptor gene influences negative emotionality,” Biological Psychiatry, vol. 69, no. 6, pp. 601–603, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Tost, B. Kolachana, S. Hakimi et al., “A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 31, pp. 13936–13941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. R. Bramham and E. Messaoudi, “BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis,” Progress in Neurobiology, vol. 76, no. 2, pp. 99–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. M. E. Greenberg, B. Xu, B. Lu, and B. L. Hempstead, “New insights in the biology of BDNF synthesis and release: implications in CNS function,” Journal of Neuroscience, vol. 29, no. 41, pp. 12764–12767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. H. W. Horch and L. C. Katz, “BDNF release from single cells elicits local dendritic growth in nearby neurons,” Nature Neuroscience, vol. 5, no. 11, pp. 1177–1184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Ji, P. T. Pang, L. Feng, and B. Lu, “Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons,” Nature Neuroscience, vol. 8, no. 2, pp. 164–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Lu, P. T. Pang, and N. H. Woo, “The yin and yang of neurotrophin action,” Nature Reviews Neuroscience, vol. 6, no. 8, pp. 603–614, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Zhou, J. Xiong, Y. Lim et al., “Upregulation of blood proBDNF and its receptors in major depression,” Journal of Affective Disorders, vol. 150, no. 3, pp. 776–784. View at Publisher · View at Google Scholar
  47. H. K. Teng, K. K. Teng, R. Lee et al., “ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin,” The Journal of Neuroscience, vol. 25, no. 22, pp. 5455–5463, 2005. View at Google Scholar
  48. R. Lee, P. Kermani, K. K. Teng, and B. L. Hempstead, “Regulation of cell survival by secreted proneurotrophins,” Science, vol. 294, no. 5548, pp. 1945–1948, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Karege, G. Perret, G. Bondolfi, M. Schwald, G. Bertschy, and J.-M. Aubry, “Decreased serum brain-derived neurotrophic factor levels in major depressed patients,” Psychiatry Research, vol. 109, no. 2, pp. 143–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Deveci, O. Aydemir, O. Taskin, F. Taneli, and A. Esen-Danaci, “Serum BDNF levels in suicide attempters related to psychosocial stressors: a comparative study with depression,” Neuropsychobiology, vol. 56, no. 2-3, pp. 93–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Chen, D. Dowlatshahi, G. M. MacQueen, J.-F. Wang, and L. T. Young, “Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication,” Biological Psychiatry, vol. 50, no. 4, pp. 260–265, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Shimizu, K. Hashimoto, N. Okamura et al., “Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants,” Biological Psychiatry, vol. 54, no. 1, pp. 70–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. R. S. Duman and L. M. Monteggia, “A neurotrophic model for stress-related mood disorders,” Biological Psychiatry, vol. 59, no. 12, pp. 1116–1127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. J. O. Groves, “Is it time to reassess the BDNF hypothesis of depression?” Molecular Psychiatry, vol. 12, no. 12, pp. 1079–1088, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. I. Sheline, M. H. Gado, and H. C. Kraemer, “Untreated depression and hippocampal volume loss,” American Journal of Psychiatry, vol. 160, no. 8, pp. 1516–1518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Videbech and B. Ravnkilde, “Hippocampal volume and depression: a meta-analysis of MRI studies,” American Journal of Psychiatry, vol. 161, no. 11, pp. 1957–1966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Yamasue, O. Abe, M. Suga et al., “Gender-common and -specific neuroanatomical basis of human anxiety-related personality traits,” Cerebral Cortex, vol. 18, no. 1, pp. 46–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. H. D. Schmidt and R. S. Duman, “Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models,” Neuropsychopharmacology, vol. 35, no. 12, pp. 2378–2391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Pan, W. A. Banks, M. B. Fasold, J. Bluth, and A. J. Kastin, “Transport of brain-derived neurotrophic factor across the blood-brain barrier,” Neuropharmacology, vol. 37, no. 12, pp. 1553–1561, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Karege, M. Schwald, and M. Cisse, “Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets,” Neuroscience Letters, vol. 328, no. 3, pp. 261–264, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Martin, M. Pearson, L. Kebejian et al., “Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess,” Endocrinology, vol. 148, no. 9, pp. 4318–4333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. U. E. Lang, R. Hellweg, and J. Gallinat, “BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits,” Neuropsychopharmacology, vol. 29, no. 4, pp. 795–798, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Terracciano, M. Lobina, M. G. Piras et al., “Neuroticism, depressive symptoms, and serum BDNF,” Psychosomatic Medicine, vol. 73, no. 8, pp. 638–642, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Tsuchimine, N. Yasui-Furukori, A. Kaneda et al., “No association between polymorphism in tyrosine hydroxylase and personality traits in healthy Japanese subjects,” Psychiatry and Clinical Neurosciences, vol. 64, no. 2, pp. 196–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Okuno, R. Yoshimura, N. Ueda et al., “Relationships between stress, social adaptation, personality traits, brain-derived neurotrophic factor and 3-methoxy-4-hydroxyphenylglycol plasma concentrations in employees at a publishing company in Japan,” Psychiatry Research, vol. 186, no. 2-3, pp. 326–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. V. Trajkovska, M. Vinberg, S. Aznar, G. M. Knudsen, and L. V. Kessing, “Whole blood BDNF levels in healthy twins discordant for affective disorder: association to life events and neuroticism,” Journal of Affective Disorders, vol. 108, no. 1-2, pp. 165–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Terracciano, B. Martin, D. Ansari et al., “Plasma BDNF concentration, Val66Met genetic variant and depression-related personality traits,” Genes, Brain and Behavior, vol. 9, no. 5, pp. 512–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Minelli, R. Zanardini, C. Bonvicini et al., “BDNF serum levels, but not BDNF Val66Met genotype, are correlated with personality traits in healthy subjects,” European Archives of Psychiatry and Clinical Neuroscience, vol. 261, no. 5, pp. 323–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Arias, M. Aguilera, J. Moya et al., “The role of genetic variability in the SLC6A4, BDNF and GABRA6 genes in anxiety-related traits,” Acta Psychiatrica Scandinavica, vol. 125, no. 3, pp. 194–202, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. L. De Beaumont, A. J. Fiocco, G. Quesnel, S. Lupien, and J. Poirier, “Altered declarative memory in introverted middle-aged adults carrying the BDNF val66met allele,” Behavioural Brain Research, vol. 253, pp. 152–156, 2013. View at Google Scholar
  71. P. Gong, S. Xi, S. Li et al., “Effect of Val66Met polymorphism in BDNF on attentional bias in an extroverted Chinese Han population,” Acta Neurobiologiae Experimentalis, vol. 73, pp. 280–288, 2013. View at Google Scholar
  72. B. J. Ham, H. B. An, S. M. Cho et al., “An association study of the brain-derived neurotrophic factor genes polymorphisms and personality traits,” Korean Journal of Biological Psychiatry, vol. 12, no. 2, pp. 216–220, 2005. View at Google Scholar
  73. K. Hiio, L. Merenäkk, N. Nordquist et al., “Effects of serotonin transporter promoter and BDNF Val66Met genotype on personality traits in a population representative sample of adolescents,” Psychiatric Genetics, vol. 21, no. 5, pp. 261–264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Hünnerkopf, A. Strobel, L. Gutknecht, B. Brocke, and K. P. Lesch, “Interaction between BDNF Val66Met and dopamine transporter gene variation influences anxiety-related traits,” Neuropsychopharmacology, vol. 32, no. 12, pp. 2552–2560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Itoh, K. Hashimoto, C. Kumakiri, E. Shimizu, and M. Iyo, “Association between brain-derived neurotrophic factor 196 G/A polymorphism and personality traits in healthy subjects,” American Journal of Medical Genetics: Neuropsychiatric Genetics, vol. 124, no. 1, pp. 61–63, 2004. View at Google Scholar · View at Scopus
  76. S. J. Kim, S.-J. Cho, H. M. Jang et al., “Interaction between brain-derived neurotrophic factor Val66Met polymorphism and recent negative stressor in harm avoidance,” Neuropsychobiology, vol. 61, no. 1, pp. 19–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. X. Jiang, K. Xu, J. Hoberman et al., “BDNF variation and mood disorders: a novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects,” Neuropsychopharmacology, vol. 30, no. 7, pp. 1353–1361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. R. T. Joffe, J. M. Gatt, A. H. Kemp et al., “Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: Implications for depressive illness,” Human Brain Mapping, vol. 30, no. 4, pp. 1246–1256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. U. E. Lang, R. Hellweg, P. Kalus et al., “Association of a functional BDNF polymorphism and anxiety-related personality traits,” Psychopharmacology, vol. 180, no. 1, pp. 95–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Montag, U. Basten, C. Stelzel, C. J. Fiebach, and M. Reuter, “The BDNF Val66Met polymorphism and anxiety: support for animal knock-in studies from a genetic association study in humans,” Psychiatry Research, vol. 179, no. 1, pp. 86–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Montag, S. Markett, U. Basten et al., “Epistasis of the DRD2/ANKK1 Taq Ia and the BDNF Val66Met polymorphism impacts novelty seeking and harm avoidance,” Neuropsychopharmacology, vol. 35, no. 9, pp. 1860–1867, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Savitz, L. Van Der Merwe, and R. Ramesar, “Personality endophenotypes for bipolar affective disorder: a family-based genetic association analysis,” Genes, Brain and Behavior, vol. 7, no. 8, pp. 869–876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Sen, R. M. Nesse, S. F. Stoltenberg et al., “A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression,” Neuropsychopharmacology, vol. 28, no. 2, pp. 397–401, 2003. View at Google Scholar · View at Scopus
  84. A. Suzuki, Y. Matsumoto, N. Shibuya et al., “The brain-derived neurotrophic factor Val66Met polymorphism modulates the effects of parental rearing on personality traits in healthy subjects,” Genes, Brain and Behavior, vol. 10, no. 4, pp. 385–391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Terracciano, T. Tanaka, A. R. Sutin et al., “BDNF Val66Met is associated with introversion and interacts with 5-HTTLPR to influence neuroticism,” Neuropsychopharmacology, vol. 35, no. 5, pp. 1083–1089, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Tochigi, T. Otowa, M. Suga et al., “No evidence for an association between the BDNF Val66Met polymorphism and schizophrenia or personality traits,” Schizophrenia Research, vol. 87, no. 1-3, pp. 45–47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. S.-J. Tsai, C.-J. Hong, Y. W.-Y. Yu, and T.-J. Chen, “Association study of a brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and personality trait and intelligence in healthy young females,” Neuropsychobiology, vol. 49, no. 1, pp. 13–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. N. T. Walter, C. Montag, S. A. Markett, and M. Reuter, “Interaction effect of functional variants of the BDNF and DRD2/ANKK1 gene is associated with alexithymia in healthy human subjects,” Psychosomatic Medicine, vol. 73, no. 1, pp. 23–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. S. A. G. Willis-Owen, J. Fullerton, P. G. Surtees, N. W. J. Wainwright, S. Miller, and J. Flint, “The Val66Met coding variant of the brain-derived neurotrophic factor (BDNF) gene does not contribute toward variation in the personality trait neuroticism,” Biological Psychiatry, vol. 58, no. 9, pp. 738–742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Fujimura, C. A. Altar, R. Chen et al., “Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation,” Thrombosis and Haemostasis, vol. 87, no. 4, pp. 728–734, 2002. View at Google Scholar · View at Scopus
  91. A. Piccinni, D. Marazziti, A. Del Debbio et al., “Diurnal variation of plasma brain-derived neurotrophic factor (BDNF) in humans: an analysis of sex differences,” Chronobiology International, vol. 25, no. 5, pp. 819–826, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. S.-W. Choi, S. Bhang, and J.-H. Ahn, “Diurnal variation and gender differences of plasma brain-derived neurotrophic factor in healthy human subjects,” Psychiatry Research, vol. 186, no. 2-3, pp. 427–430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Katoh-Semba, R. Wakako, T. Komori et al., “Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls,” International Journal of Developmental Neuroscience, vol. 25, no. 6, pp. 367–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. L. Molendijk, B. A. A. Bus, P. Spinhoven et al., “Serum levels of brain-derived neurotrophic factor in major depressive disorder: State-trait issues, clinical features and pharmacological treatment,” Molecular Psychiatry, vol. 16, no. 11, pp. 1088–1095, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Jylhä, M. Ketokivi, O. Mantere et al., “Do antidepressants change personality?—a five-year observational study,” Journal of Affective Disorders, vol. 142, no. 1, pp. 200–207, 2012. View at Google Scholar
  96. M. F. Egan, M. Kojima, J. H. Callicott et al., “The BDNF Val66Met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function,” Cell, vol. 112, no. 2, pp. 257–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Pezawas, B. A. Verchinski, V. S. Mattay et al., “The brain-derived neurotrophic factor Val66Met polymorphism and variation in human cortical morphology,” Journal of Neuroscience, vol. 24, no. 45, pp. 10099–10102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. J. A. Bueller, M. Aftab, S. Sen, D. Gomez-Hassan, M. Burmeister, and J.-K. Zubieta, “BDNF Val66Met Allele is associated with reduced hippocampal volume in healthy subjects,” Biological Psychiatry, vol. 59, no. 9, pp. 812–815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Montag, B. Weber, K. Fliessbach, C. Elger, and M. Reuter, “The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: incremental support for a genetic risk factor for depression,” Psychological Medicine, vol. 39, no. 11, pp. 1831–1839, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. M. E. Sublette, E. Baca-Garcia, R. V. Parsey et al., “Effect of BDNF Val66Met polymorphism on age-related amygdala volume changes in healthy subjects,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 7, pp. 1652–1655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Cole, D. R. Weinberger, V. S. Mattay et al., “No effect of 5HTTLPR or BDNF Val66Met polymorphism on hippocampal morphology in major depression,” Genes, Brain and Behavior, vol. 10, no. 7, pp. 756–764, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. J. P. Kambeitz, S. Bhattacharyya, L. M. Ilankovic, I. Valli, and D. A. Collier, “Effect of BDNF Met66Val-Polymorphism on declarative memory and its neural substrate: a meta-analysis,” Neuroscience & Biobehavioral Reviews, vol. 36, no. 9, pp. 2165–2177, 2012. View at Google Scholar
  103. C. Montag, M. Reuter, B. Newport, C. Elger, and B. Weber, “The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: Evidence from a genetic imaging study,” NeuroImage, vol. 42, no. 4, pp. 1554–1559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. P. Mukherjee, H. C. Whalley, J. W. McKirdy et al., “Effects of the BDNF Val66Met polymorphism on neural responses to facial emotion,” Psychiatry Research: Neuroimaging, vol. 191, no. 3, pp. 182–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Y. F. Lau, D. Goldman, B. Buzas et al., “BDNF gene polymorphism (Val66Met) predicts amygdala and anterior hippocampus responses to emotional faces in anxious and depressed adolescents,” NeuroImage, vol. 53, no. 3, pp. 952–961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Terracciano, M. G. Piras, M. Lobina, A. Mulas, O. Meirelles, and A. R. Sutin, “Genetics of serum BDNF: meta-analysis of the Val66Met and genome-wide association study,” World Journal of Biological Psychiatry, vol. 14, no. 8, pp. 583–589, 2011. View at Publisher · View at Google Scholar
  107. Z.-Y. Chen, D. Jing, K. G. Bath et al., “Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior,” Science, vol. 314, no. 5796, pp. 140–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. P. G. Surtees, N. W. J. Wainwright, S. A. G. Willis-Owen et al., “No association between the BDNF Val66Met polymorphism and mood status in a non-clinical community sample of 7389 older adults,” Journal of Psychiatric Research, vol. 41, no. 5, pp. 404–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Frustaci, G. Pozzi, F. Gianfagna, L. Manzoli, and S. Boccia, “Meta-analysis of the brain-derived neurotrophic factor gene (BDNF) Val66Met polymorphism in anxiety disorders and anxiety-related personality traits,” Neuropsychobiology, vol. 58, no. 3-4, pp. 163–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. W. D. Taylor, S. Züchner, D. R. McQuoid, D. C. Steffens, D. G. Blazer, and K. R. R. Krishnan, “Social support in older individuals: the role of the BDNF Val66Met polymorphism,” American Journal of Medical Genetics, B: Neuropsychiatric Genetics, vol. 147, no. 7, pp. 1205–1212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. X. Ma, J. Sun, J. Yao et al., “A quantitative association study between schizotypal traits and COMT, PRODH and BDNF genes in a healthy Chinese population,” Psychiatry Research, vol. 153, no. 1, pp. 7–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. K.-P. Lesch, D. Bengel, A. Heils et al., “Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region,” Science, vol. 274, no. 5292, pp. 1527–1531, 1996. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Canli and K.-P. Lesch, “Long story short: the serotonin transporter in emotion regulation and social cognition,” Nature Neuroscience, vol. 10, no. 9, pp. 1103–1109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. L. Pezawas, A. Meyer-Lindenberg, A. L. Goldman et al., “Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression,” Molecular Psychiatry, vol. 13, no. 7, pp. 709–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. O. Berton, C. A. McClung, R. J. DiLeone et al., “Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress,” Science, vol. 311, no. 5762, pp. 864–868, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Hyman, M. Hofer, Y.-A. Barde et al., “BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra,” Nature, vol. 350, no. 6315, pp. 230–232, 1991. View at Publisher · View at Google Scholar · View at Scopus
  117. E. G. Jönsson, M. M. Nöthen, F. Grünhage et al., “Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers,” Molecular Psychiatry, vol. 4, no. 3, pp. 290–296, 1999. View at Google Scholar · View at Scopus
  118. J. I. Kang, D.-H. Song, K. Namkoong, and S. J. Kim, “Interaction effects between COMT and BDNF polymorphisms on boredom susceptibility of sensation seeking traits,” Psychiatry Research, vol. 178, no. 1, pp. 132–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Fuke, “The VNTR polymorphism of the human dopamine transporter (DAT!) gene affects gene expression,” Pharmacogenomics Journal, vol. 1, no. 2, pp. 152–156, 2001. View at Google Scholar · View at Scopus
  120. G. M. Miller and B. K. Madras, “Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression,” Molecular Psychiatry, vol. 7, no. 1, pp. 44–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. H. M. Lachman, D. F. Papolos, T. Saito, Y.-M. Yu, C. L. Szumlanski, and R. M. Weinshilboum, “Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders,” Pharmacogenetics, vol. 6, no. 3, pp. 243–250, 1996. View at Publisher · View at Google Scholar · View at Scopus
  122. R. M. Bilder, J. Volavka, H. M. Lachman, and A. A. Grace, “The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes,” Neuropsychopharmacology, vol. 29, no. 11, pp. 1943–1961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Zuckerman, “The psychophysiology of sensation seeking,” Journal of personality, vol. 58, no. 1, pp. 313–345, 1990. View at Google Scholar · View at Scopus
  124. A. Caspi, K. Sugden, T. E. Moffitt et al., “Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene,” Science, vol. 301, no. 5631, pp. 386–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. L. Mandelli, N. Antypa, F. A. Nearchou et al., “The role of serotonergic genes and environmental stress on the development of depressive symptoms and neuroticism,” Journal of Affective Disorders, vol. 142, no. 1–3, pp. 82–89, 2012. View at Publisher · View at Google Scholar
  126. M. Pluess, J. Belsky, B. M. Way, and S. E. Taylor, “5-HTTLPR moderates effects of current life events on neuroticism: differential susceptibility to environmental influences,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 34, no. 6, pp. 1070–1074, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Wagner, Ö. Baskaya, K. Lieb, N. Dahmen, and A. Tadić, “The 5-HTTLPR Polymorphism modulates the association of serious life events (SLE) and impulsivity in patients with Borderline Personality Disorder,” Journal of Psychiatric Research, vol. 43, no. 13, pp. 1067–1072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. J. M. Gatt, C. B. Nemeroff, C. Dobson-Stone et al., “Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety,” Molecular Psychiatry, vol. 14, no. 7, pp. 681–695, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Aguilera, B. Arias, M. Wichers et al., “Early adversity and 5-HTT/BDNF genes: new evidence of gene-environment interactions on depressive symptoms in a general population,” Psychological Medicine, vol. 39, no. 9, pp. 1425–1432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Wichers, G. Kenis, N. Jacobs et al., “The BDNF Val66Met x 5-HTTLPR x child adversity interaction and depressive symptoms: an attempt at replication,” American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, vol. 147, no. 1, pp. 120–123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Terracciano, S. Sanna, M. Uda et al., “Genome-wide association scan for five major dimensions of personality,” Molecular Psychiatry, vol. 15, no. 6, pp. 647–656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. T.-Y. Zhang and M. J. Meaney, “Epigenetics and the environmental regulation of the genome and its function,” Annual Review of Psychology, vol. 61, pp. 439–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. T. L. Roth and J. D. Sweatt, “Epigenetic marking of the BDNF gene by early-life adverse experiences,” Hormones and Behavior, vol. 59, no. 3, pp. 315–320, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. E. Dempster, T. Toulopoulou, C. McDonald et al., “Association between BDNF val66 met genotype and episodic memory,” American Journal of Medical Genetics: Neuropsychiatric Genetics, vol. 134, no. 1, pp. 73–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. T. E. Goldberg and D. R. Weinberger, “Genes and the parsing of cognitive processes,” Trends in Cognitive Sciences, vol. 8, no. 7, pp. 325–335, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. Y. Kovas and R. Plomin, “Generalist genes: implications for the cognitive sciences,” Trends in Cognitive Sciences, vol. 10, no. 5, pp. 198–203, 2006. View at Publisher · View at Google Scholar · View at Scopus