Table of Contents
Advances in Biology
Volume 2014, Article ID 808569, 21 pages
http://dx.doi.org/10.1155/2014/808569
Review Article

The Biosynthesis of the Molybdenum Cofactor in Escherichia coli and Its Connection to FeS Cluster Assembly and the Thiolation of tRNA

Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany

Received 16 January 2014; Accepted 28 March 2014; Published 29 April 2014

Academic Editor: Paul Rösch

Copyright © 2014 Silke Leimkühler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Coughlan, “The role of molybdenum in human biology,” Journal of Inherited Metabolic Disease, vol. 6, supplement 1, pp. 70–77, 1983. View at Google Scholar · View at Scopus
  2. R. Hille, “Molybdenum and tungsten in biology,” Trends in Biochemical Sciences, vol. 27, no. 7, pp. 360–367, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Hille, “The mononuclear molybdenum enzymes,” Chemical Reviews, vol. 96, no. 7, pp. 2757–2816, 1996. View at Google Scholar · View at Scopus
  4. G. Schwarz, R. R. Mendel, and M. W. Ribbe, “Molybdenum cofactors, enzymes and pathways,” Nature, vol. 460, no. 7257, pp. 839–847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. V. Rajagopalan, J. L. Johnson, and B. E. Hainline, “The pterin of the molybdenum cofactor,” Federation Proceedings, vol. 41, no. 9, pp. 2608–2612, 1982. View at Google Scholar · View at Scopus
  6. C. Iobbi-Nivol and S. Leimkuhler, “Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli,” Biochimica et Biophysica Acta, vol. 1827, pp. 1086–1101, 2013. View at Google Scholar
  7. R. Hille, T. Nishino, and F. Bittner, “Molybdenum enzymes in higher organisms,” Coordination Chemistry Reviews, vol. 255, no. 9-10, pp. 1179–1205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Gutteridge, S. J. Tanner, and R. C. Bray, “Comparison of the molybdenum centres of native and desulpho xanthine oxidase. The nature of the cyanide-labile Sulphur atom and the nature of the proton-accepting group,” Biochemical Journal, vol. 175, no. 3, pp. 887–897, 1978. View at Google Scholar · View at Scopus
  9. M. P. Coughlan, J. L. Johnson, and K. V. Rajagopalan, “Mechanisms of inactivation of molybdoenzymes by cyanide,” The Journal of Biological Chemistry, vol. 255, no. 7, pp. 2694–2699, 1980. View at Google Scholar · View at Scopus
  10. R. C. Wahl and K. V. Rajagopalan, “Evidence for the inorganic nature of the cyanolyzable Sulfur of molybdenum hydroxylases,” The Journal of Biological Chemistry, vol. 257, no. 3, pp. 1354–1359, 1982. View at Google Scholar · View at Scopus
  11. R. Hille and R. F. Anderson, “Coupled electron/proton transfer in complex flavoproteins: solvent kinetic isotope effect studies of electron transfer in xanthine oxidase and trimethylamine dehydrogenase,” The Journal of Biological Chemistry, vol. 276, no. 33, pp. 31193–31201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Leimkühler and M. Neumann, “The role of system-specific molecular chaperones in the maturation of molybdoenzymes in bacteria,” Biochemistry Research International, vol. 2011, Article ID 850924, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Brody and R. Hille, “The kinetic behavior of chicken liver sulfite oxidase,” Biochemistry, vol. 38, no. 20, pp. 6668–6677, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Brokx, R. A. Rothery, G. Zhang, D. P. Ng, and J. H. Weiner, “Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function,” Biochemistry, vol. 44, no. 30, pp. 10339–10348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. C. A. Raaijmakers and M. J. Romão, “Formate-reduced E. coli formate dehydrogenase H: the reinterpretation of the crystal structure suggests a new reaction mechanism,” Journal of Biological Inorganic Chemistry, vol. 11, no. 7, pp. 849–854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Grimaldi, B. Schoepp-Cothenet, P. Ceccaldi, B. Guigliarelli, and A. Magalon, “The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic,” Biochimica et Biophysica Acta, vol. 1827, pp. 1048–1085, 2013. View at Google Scholar
  17. F. Bittner, “Molybdenum metabolism in plants and crosstalk to Iron,” Frontiers in Plant Science, vol. 5, article 28, 2014. View at Publisher · View at Google Scholar
  18. R. R. Mendel and T. Kruse, “Cell biology of molybdenum in plants and humans,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1823, no. 9, pp. 1568–1579, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Schwarz, R. R. Mendel, and M. W. Ribbe, “Molybdenum cofactors, enzymes and pathways,” Nature, vol. 460, no. 7257, pp. 839–847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. R. Mendel, “The molybdenum cofactor,” The Journal of Biological Chemistry, vol. 288, pp. 13165–13172, 2013. View at Google Scholar
  21. K. V. Rajagopalan, “Biosynthesis of the molybdenum cofactor,” in Escherichia Coli and Salmonella Cellular and Molecular Biology, F. C. Neidhardt, Ed., pp. 674–679, ASM Press, Washington, DC, USA, 1996. View at Google Scholar
  22. M. M. Wuebbens and K. V. Rajagopalan, “Structural characterization of a molybdopterin precursor,” The Journal of Biological Chemistry, vol. 268, no. 18, pp. 13493–13498, 1993. View at Google Scholar · View at Scopus
  23. D. M. Pitterle, J. L. Johnson, and K. V. Rajagopalan, “In vitro synthesis of molybdopterin from precursor Z using purified converting factor. Role of protein-bound Sulfur in formation of the dithiolene,” The Journal of Biological Chemistry, vol. 268, no. 18, pp. 13506–13509, 1993. View at Google Scholar · View at Scopus
  24. M. S. Joshi, J. L. Johnson, and K. V. Rajagopalan, “Molybdenum cofactor biosynthesis in Escherichia coli mod and mog mutants,” Journal of Bacteriology, vol. 178, no. 14, pp. 4310–4312, 1996. View at Google Scholar · View at Scopus
  25. S. Reschke, K. G. Sigfridsson, P. Kaufmann et al., “Identification of a Bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli,” The Journal of Biological Chemistry, vol. 288, pp. 29736–29745, 2013. View at Google Scholar
  26. T. Palmer, A. Vasishta, P. W. Whitty, and D. H. Boxer, “Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli,” European Journal of Biochemistry, vol. 222, no. 2, pp. 687–692, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Hilton and K. V. Rajagopalan, “Identification of the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans as bis(molybdopterin guanine dinucleotide)molybdenum,” Archives of Biochemistry and Biophysics, vol. 325, no. 1, pp. 139–143, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Neumann, G. Mittelstädt, F. Seduk, C. Iobbi-Nivol, and S. Leimkühler, “MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli,” The Journal of Biological Chemistry, vol. 284, no. 33, pp. 21891–21898, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. T. Shanmugam, V. Stewart, R. P. Gunsalus et al., “Proposed nomenclature for the genes involved in molybdenum metabolism in Escherichia coli and Salmonella typhimurium,” Molecular Microbiology, vol. 6, no. 22, pp. 3452–3454, 1992. View at Publisher · View at Google Scholar · View at Scopus
  30. S. L. Rivers, E. McNairn, F. Blasco, G. Giordano, and D. H. Boxer, “Molecular genetic analysis of the moa operon of Escherichia coli K-12 required for molybdenum cofactor biosynthesis,” Molecular Microbiology, vol. 8, no. 6, pp. 1071–1081, 1993. View at Google Scholar · View at Scopus
  31. C. Lobbi-Nivol, T. Palmer, P. W. Whitty, E. McNairn, and D. H. Boxer, “The mob locus of Escherichia coli K12 required for molybdenum cofactor biosynthesis is expressed at very low levels,” Microbiology, vol. 141, no. 7, pp. 1663–1671, 1995. View at Google Scholar · View at Scopus
  32. M. E. Johnson and K. V. Rajagopalan, “Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis,” Journal of Bacteriology, vol. 169, no. 1, pp. 117–125, 1987. View at Google Scholar · View at Scopus
  33. J. Nichols and K. V. Rajagopalan, “Escherichia coli MoeA and MogA: function in metal incorporation step of molybdenum cofactor biosynthesis,” The Journal of Biological Chemistry, vol. 277, no. 28, pp. 24995–25000, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Leimkühler, M. M. Wuebbens, and K. V. Rajagopalan, “Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor,” The Journal of Biological Chemistry, vol. 276, no. 37, pp. 34695–34701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Kuper, A. Llamas, H.-J. Hecht, R. R. Mendel, and G. Schwarz, “Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism,” Nature, vol. 430, no. 7001, pp. 803–806, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Maupin-Furlow, J. K. Rosentel, J. H. Lee, U. Deppenmeier, R. P. Gunsalus, and K. T. Shanmugam, “Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli,” Journal of Bacteriology, vol. 177, no. 17, pp. 4851–4856, 1995. View at Google Scholar · View at Scopus
  37. S. Leimkühler and K. V. Rajagopalan, “A sulfurtransferase is required in the transfer of cysteine Sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli,” The Journal of Biological Chemistry, vol. 276, no. 25, pp. 22024–22031, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Leimkühler, M. M. Wuebbens, and K. V. Rajagopalan, “The history of the discovery of the molybdenum cofactor and novel aspects of its biosynthesis in bacteria,” Coordination Chemistry Reviews, vol. 255, no. 9-10, pp. 1129–1144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Santamaria-Araujo, B. Fischer, T. Otte et al., “The tetrahydropyranopterin structure of the Sulfur- and metal-free molybdenum cofactor precursor,” The Journal of Biological Chemistry, vol. 279, no. 16, pp. 15994–15999, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. B. M. Hover, A. Loksztejn, A. A. Ribeiro, and K. Yokoyama, “Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis,” Journal of the American Chemical Society, vol. 135, pp. 7019–7032, 2013. View at Google Scholar
  41. A. P. Mehta, S. H. Abdelwahed, and T. P. Begley, “Molybdopterin biosynthesis: trapping an unusual purine ribose adduct in the MoaA-catalyzed reaction,” Journal of the American Chemical Society, vol. 135, pp. 10883–10885, 2013. View at Google Scholar
  42. M. M. Wuebbens, M. T. Liu, K. V. Rajagopalan, and H. Schindelin, “Insight into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC,” Structure, vol. 8, no. 7, pp. 709–718, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Hänzelmann and H. Schindelin, “Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 35, pp. 12870–12875, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Hänzelmann, H. L. Hernández, C. Menzel et al., “Characterization of MOCS1A, an Oxygen-sensitive Iron-Sulfur protein involved in human molybdenum cofactor biosynthesis,” The Journal of Biological Chemistry, vol. 279, no. 33, pp. 34721–34732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. H. J. Sofia, G. Chen, B. G. Hetzler, J. F. Reyes-Spindola, and N. E. Miller, “Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods,” Nucleic Acids Research, vol. 29, no. 5, pp. 1097–1106, 2001. View at Google Scholar · View at Scopus
  46. N. S. Lees, P. Hänzelmann, H. L. Hernandez et al., “ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S] cluster II of the S-adenosylmethionine-dependent enzyme MoaA: mechanistic implications,” Journal of the American Chemical Society, vol. 131, no. 26, pp. 9184–9185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Hänzelmann and H. Schindelin, “Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 6829–6834, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. A. P. Mehta, J. W. Hanes, S. H. Abdelwahed, D. G. Hilmey, P. Hänzelmann, and T. P. Begley, “Catalysis of a new ribose Carbon-insertion reaction by the molybdenum cofactor biosynthetic enzyme MoaA,” Biochemistry, vol. 52, pp. 1134–1136, 2013. View at Google Scholar
  49. D. M. Pitterle and K. V. Rajagopalan, “The biosynthesis of molybdopterin in Escherichia coli. Purification and characterization of the converting factor,” The Journal of Biological Chemistry, vol. 268, no. 18, pp. 13499–13505, 1993. View at Google Scholar · View at Scopus
  50. D. M. Pitterle, J. L. Johnson, and K. V. Rajagopalan, “Molybdopterin formation by converting factor of E. coli chlA1,” The FASEB Journal, vol. 4, p. A1957, 1990. View at Google Scholar
  51. D. M. Pitterle and K. V. Rajagopalan, “Two proteins encoded at the chlA locus constitute the converting factor of Escherichia coli chlA1,” Journal of Bacteriology, vol. 171, no. 6, pp. 3373–3378, 1989. View at Google Scholar · View at Scopus
  52. G. Gutzke, B. Fischer, R. R. Mendel, and G. Schwarz, “Thiocarboxylation of molybdopterin synthase provides evidence for the mechanism of dithiolene formation in metal-binding pterins,” The Journal of Biological Chemistry, vol. 276, no. 39, pp. 36268–36274, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. M. J. Rudolph, M. M. Wuebbens, K. V. Rajagopalan, and H. Schindelin, “Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation,” Nature Structural Biology, vol. 8, no. 1, pp. 42–46, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. M. M. Wuebbens and K. V. Rajagopalan, “Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis,” The Journal of Biological Chemistry, vol. 278, no. 16, pp. 14523–14532, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. J. N. Daniels, M. M. Wuebbens, K. V. Rajagopalan, and H. Schindelin, “Crystal structure of a molybdopterin synthase-precursor Z complex: insight into its Sulfur transfer mechanism and its role in molybdenum cofactor deficiency,” Biochemistry, vol. 47, no. 2, pp. 615–626, 2008, Erratum in: Biochemistry, vol. 47, no. 10, pp. 3315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Schmitz, M. M. Wuebbens, K. V. Rajagopalan, and S. Leimkühler, “Role of the C-terminal Gly-Gly motif of Escherichia coli MoaD, a molybdenum cofactor biosynthesis protein with a ubiquitin fold,” Biochemistry, vol. 46, no. 3, pp. 909–916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. K. V. Rajagopalan, “Biosynthesis and processing of the molybdenum cofactors,” Biochemical Society Transactions, vol. 25, no. 3, pp. 757–761, 1997. View at Google Scholar · View at Scopus
  58. M. W. Lake, M. M. Wuebbens, K. V. Rajagopalan, and H. Schindelin, “Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex,” Nature, vol. 414, no. 6861, pp. 325–329, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Tong, M. M. Wuebbens, K. V. Rajagopalan, and M. C. Fitzgerald, “Thermodynamic analysis of subunit interactions in Escherichia coli molybdopterin synthase,” Biochemistry, vol. 44, no. 7, pp. 2595–2601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. J. U. Dahl, C. Radon, M. Bühning et al., “The Sulfur carrier protein TusA has a pleiotropic role in Escherichia coli that also affects molybdenum cofactor biosynthesis,” The Journal of Biological Chemistry, vol. 288, pp. 5426–5442, 2013. View at Google Scholar
  61. J.-U. Dahl, A. Urban, A. Bolte et al., “The identification of a novel protein involved in molybdenum cofactor biosynthesis in Escherichia coli,” The Journal of Biological Chemistry, vol. 286, no. 41, pp. 35801–35812, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. M. T. W. Liu, M. M. Wuebbens, K. V. Rajagopalan, and H. Schindelin, “Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli,” The Journal of Biological Chemistry, vol. 275, no. 3, pp. 1814–1822, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Xiang, J. Nichols, K. V. Rajagopalan, and H. Schindelin, “The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin,” Structure, vol. 9, no. 4, pp. 299–310, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. J. D. Schrag, W. Huang, J. Sivaraman et al., “The crystal structure of Escherichia coli MoeA, a protein from the molybdopterin synthesis pathway,” Journal of Molecular Biology, vol. 310, no. 2, pp. 419–431, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. J. D. Nichols and K. V. Rajagopalan, “In vitro molybdenum ligation to molybdopterin using purified components,” The Journal of Biological Chemistry, vol. 280, no. 9, pp. 7817–7822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Llamas, R. R. Mendel, and G. Schwarz, “Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion,” The Journal of Biological Chemistry, vol. 279, no. 53, pp. 55241–55246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Llamas, T. Otte, G. Multhaup, R. R. Mendel, and G. Schwarz, “The mechanism of nucleotide-assisted molybdenum insertion into molybdopterin: a novel route toward metal cofactor assembly,” The Journal of Biological Chemistry, vol. 281, no. 27, pp. 18343–18350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Leimkühler and K. V. Rajagopalan, “In vitro incorporation of nascent molybdenum cofactor into human sulfite oxidase,” The Journal of Biological Chemistry, vol. 276, no. 3, pp. 1837–1844, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Neumann and S. Leimkühler, “Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli,” The FEBS Journal, vol. 275, no. 22, pp. 5678–5689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Loschi, S. J. Brokx, T. L. Hills et al., “Structural and biochemical identification of a novel bacterial oxidoreductase,” The Journal of Biological Chemistry, vol. 279, no. 48, pp. 50391–50400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. C. A. Temple and K. V. Rajagopalan, “Mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase,” The Journal of Biological Chemistry, vol. 275, no. 51, pp. 40202–40210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. M. W. Lake, C. A. Temple, K. V. Rajagopalan, and H. Schindelin, “The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis,” The Journal of Biological Chemistry, vol. 275, no. 51, pp. 40211–40217, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. C. E. M. Stevenson, F. Sargent, G. Buchanan, T. Palmer, and D. M. Lawson, “Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution,” Structure, vol. 8, no. 11, pp. 1115–1125, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. J. L. Johnson, L. W. Indermaur, and K. V. Rajagopalan, “Molybdenum cofactor biosynthesis in Escherichia coli: requirement of the chlB gene product for the formation of molybdopterin guanine dinucleotide,” The Journal of Biological Chemistry, vol. 266, no. 19, pp. 12140–12145, 1991. View at Google Scholar · View at Scopus
  75. K. McLuskey, J. A. Harrison, A. W. Schüttelkopf, D. H. Boxer, and W. N. Hunter, “Insight into the role of Escherichia coli MobB in molybdenum cofactor biosynthesis based on the high resolution crystal structure,” The Journal of Biological Chemistry, vol. 278, no. 26, pp. 23706–23713, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. D. J. Eaves, T. Palmer, and D. H. Boxer, “The product of the molybdenum cofactor gene mobB of Escherichia coli is a GTP-binding protein,” European Journal of Biochemistry, vol. 246, no. 3, pp. 690–697, 1997. View at Google Scholar · View at Scopus
  77. S. Leimkühler and W. Klipp, “The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor,” FEMS Microbiology Letters, vol. 174, no. 2, pp. 239–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. O. Genest, V. Méjean, and C. Iobbi-Nivol, “Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes,” FEMS Microbiology Letters, vol. 297, no. 1, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Kisker, H. Schindelin, and D. C. Rees, “Molybdenum-cofactor-containing enzymes: structure and mechanism,” Annual Review of Biochemistry, vol. 66, pp. 233–267, 1997. View at Publisher · View at Google Scholar · View at Scopus
  80. F. Blasco, J.-P. Dos Santos, A. Magalon et al., “NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli,” Molecular Microbiology, vol. 28, no. 3, pp. 435–447, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Blasco, J. Pommier, V. Augier, M. Chippaux, and G. Giordano, “Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli,” Molecular Microbiology, vol. 6, no. 2, pp. 221–230, 1992. View at Google Scholar · View at Scopus
  82. N. Ray, J. Oates, R. J. Turner, and C. Robinson, “DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus,” FEBS Letters, vol. 534, no. 1-3, pp. 156–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Guymer, J. Maillard, and F. Sargent, “A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12,” Archives of Microbiology, vol. 191, no. 6, pp. 519–528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Thomé, A. Gust, R. Toci et al., “A sulfurtransferase is essential for activity of formate dehydrogenases in Escherichia coli,” The Journal of Biological Chemistry, vol. 287, no. 7, pp. 4671–4678, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. O. Genest, M. Ilbert, V. Méjean, and C. Iobbi-Nivol, “TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature,” The Journal of Biological Chemistry, vol. 280, no. 16, pp. 15644–15648, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. O. Genest, F. Seduk, L. Théraulaz, V. Méjean, and C. Iobbi-Nivol, “Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation,” FEMS Microbiology Letters, vol. 265, no. 1, pp. 51–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. O. Genest, M. Neumann, F. Seduk et al., “Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components,” The Journal of Biological Chemistry, vol. 283, no. 31, pp. 21433–21440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Böhmer, T. Hartmann, and S. Leimkühler, “The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor,” FEBS Letters, vol. 588, no. 4, pp. 531–537, 2014. View at Google Scholar
  89. T. Hartmann and S. Leimkuhler, “The Oxygen-tolerant and NAD(+) -dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate,” The FEBS Journal, vol. 280, pp. 6083–6096, 2013. View at Google Scholar
  90. C. Coelho, P. J. González, J. G. Moura, I. Moura, J. Trincão, and M. João Romão, “The crystal structure of cupriavidus necator nitrate reductase in oxidized and partially reduced states,” Journal of Molecular Biology, vol. 408, no. 5, pp. 932–948, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Najmudin, P. J. González, J. Trincão et al., “Periplasmic nitrate reductase revisited: a Sulfur atom completes the sixth coordination of the catalytic molybdenum,” Journal of Biological Inorganic Chemistry, vol. 13, no. 5, pp. 737–753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Xi, B. L. Schneider, and L. Reitzer, “Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage,” Journal of Bacteriology, vol. 182, no. 19, pp. 5332–5341, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. S. G. Kozmin and R. M. Schaaper, “Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function,” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 619, no. 1-2, pp. 9–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Neumann, G. Mittelstädt, C. Iobbi-Nivol et al., “A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli,” The FEBS Journal, vol. 276, no. 10, pp. 2762–2774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Neumann, F. Seduk, C. Iobbi-Nivol, and S. Leimkühler, “Molybdopterin dinucleotide biosynthesis in Escherichia coli: identification of amino acid residues of molybdopterin dinucleotide transferases that determine specificity for binding of guanine or cytosine nucleotides,” The Journal of Biological Chemistry, vol. 286, no. 2, pp. 1400–1408, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Guse, C. E. M. Stevenson, J. Kuper et al., “Biochemical and structural analysis of the molybdenum cofactor biosynthesis protein MobA,” The Journal of Biological Chemistry, vol. 278, no. 28, pp. 25302–25307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Leimkühler, S. Angermüller, G. Schwarz, R. R. Mendel, and W. Klipp, “Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis,” Journal of Bacteriology, vol. 181, no. 19, pp. 5930–5939, 1999. View at Google Scholar · View at Scopus
  98. M. Neumann, W. Stöcklein, and S. Leimkühler, “Transfer of the molybdenum cofactor synthesized by Rhodobacter capsulatus MoeA to XdhC and MobA,” The Journal of Biological Chemistry, vol. 282, no. 39, pp. 28493–28500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Neumann, W. Stöcklein, A. Walburger, A. Magalon, and S. Leimkühler, “Identification of a Rhodobacter capsulatus L-cysteine desulfurase that sulfurates the molybdenum cofactor when bound to XdhC and before its insertion into xanthine dehydrogenase,” Biochemistry, vol. 46, no. 33, pp. 9586–9595, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Neumann, M. Schulte, N. Jünemann, W. Stöcklein, and S. Leimkühler, “Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase,” The Journal of Biological Chemistry, vol. 281, no. 23, pp. 15701–15708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Leimkühler and W. Klipp, “Role of XDHC in molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus,” Journal of Bacteriology, vol. 181, no. 9, pp. 2745–2751, 1999. View at Google Scholar · View at Scopus
  102. A. R. Otrelo-Cardoso, V. Schwuchow, D. Rodrigues et al., “Biochemical, stabilization and crystallization studies on a molecular chaperone (PaoD) involved in the maturation of molybdoenzymes,” PLoS ONE, vol. 9, no. 1, Article ID e87295, 2014. View at Publisher · View at Google Scholar
  103. H. Beinert, “A tribute to Sulfur,” European Journal of Biochemistry, vol. 267, no. 18, pp. 5657–5664, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Zheng, V. L. Cash, D. H. Flint, and D. R. Dean, “Assembly of Iron-Sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii,” The Journal of Biological Chemistry, vol. 273, no. 21, pp. 13264–13272, 1998. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Zheng, R. H. White, V. L. Cash, and D. R. Dean, “Mechanism for the desulfurization of L-cysteine catalyzed by the NIFs gene product,” Biochemistry, vol. 33, no. 15, pp. 4714–4720, 1994. View at Google Scholar · View at Scopus
  106. L. Zheng, R. H. White, V. L. Cash, R. F. Jack, and D. R. Dean, “Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 7, pp. 2754–2758, 1993. View at Google Scholar · View at Scopus
  107. R. Hidese, H. Mihara, and N. Esaki, “Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of Sulfur-containing biofactors,” Applied Microbiology and Biotechnology, vol. 91, no. 1, pp. 47–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. E. G. Mueller, “Trafficking in persulfides: delivering Sulfur in biosynthetic pathways,” Nature Chemical Biology, vol. 2, no. 4, pp. 185–194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. H. D. Urbina, J. J. Silberg, K. G. Hoff, and L. E. Vickery, “Transfer of Sulfur from IscS to IscU during Fe/S cluster assembly,” The Journal of Biological Chemistry, vol. 276, no. 48, pp. 44521–44526, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. R. Shi, A. Proteau, M. Villarroya et al., “Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions,” PLoS Biology, vol. 8, no. 4, Article ID e1000354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Iannuzzi, S. Adinolfi, B. D. Howes et al., “The role of cyay in Iron Sulfur cluster assembly on the E. coli iscu scaffold protein,” PLoS ONE, vol. 6, no. 7, Article ID e21992, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Adinolfi, C. Iannuzzi, F. Prischi et al., “Bacterial frataxin CyaY is the gatekeeper of Iron-Sulfur cluster formation catalyzed by IscS,” Nature Structural & Molecular Biology, vol. 16, no. 4, pp. 390–396, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. E. G. Mueller, C. J. Buck, P. M. Palenchar, L. E. Barnhart, and J. L. Paulson, “Identification of a gene involved in the generation of 4-thiouridine in tRNA,” Nucleic Acids Research, vol. 26, no. 11, pp. 2606–2610, 1998. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Ikeuchi, N. Shigi, J.-I. Kato, A. Nishimura, and T. Suzuki, “Mechanistic insights into Sulfur relay by multiple Sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions,” Molecular Cell, vol. 21, no. 1, pp. 97–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. T. P. Begley, D. M. Downs, S. E. Ealick et al., “Thiamin biosynthesis in prokaryotes,” Archives of Microbiology, vol. 171, no. 5, pp. 293–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  116. D. Bordo and P. Bork, “The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations,” EMBO Reports, vol. 3, no. 8, pp. 741–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. R. Malkin and J. C. Rabinowitz, “The reconstitution of clostridial ferredoxin,” Biochemical and Biophysical Research Communications, vol. 23, no. 6, pp. 822–827, 1966. View at Google Scholar · View at Scopus
  118. B. Roche, L. Aussel, B. Ezraty, P. Mandin, B. Py, and F. Barras, “Iron/Sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity,” Biochimica et Biophysica Acta, vol. 1827, pp. 455–469, 2013. View at Google Scholar
  119. C. J. Schwartz, J. L. Giel, T. Patschkowski et al., “IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 14895–14900, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. C. J. Schwartz, O. Djaman, J. A. Imlay, and P. J. Kiley, “The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 9009–9014, 2000. View at Publisher · View at Google Scholar · View at Scopus
  121. E. N. Marinoni, J. S. de Oliveira, Y. Nicolet et al., “(IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer,” Angewandte Chemie, vol. 51, no. 22, pp. 5439–5442, 2012. View at Google Scholar
  122. K. Chandramouli, M.-C. Unciuleac, S. Naik, D. R. Dean, H. H. Boi, and M. K. Johnson, “Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein,” Biochemistry, vol. 46, no. 23, pp. 6804–6811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Ollagnier-De-Choudens, T. Mattioli, Y. Takahashi, and M. Fontecave, “Iron-Sulfur cluster assembly. Characterization of IscA and evidence for a specific and functional complex with ferredoxin,” The Journal of Biological Chemistry, vol. 276, no. 25, pp. 22604–22607, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. J. H. Kim, M. Tonelli, R. O. Frederick, D. C. Chow, and J. L. Markley, “Specialized Hsp70 chaperone (HscA) binds preferentially to the disordered form, whereas J-protein (HscB) binds preferentially to the structured form of the Iron-Sulfur cluster scaffold protein (IscU),” The Journal of Biological Chemistry, vol. 287, pp. 31406–31413, 2012. View at Google Scholar
  125. F. Prischi, P. V. Konarev, C. Iannuzzi et al., “Structural bases for the interaction of frataxin with the central components of Iron-Sulphur cluster assembly,” Nature Communications, vol. 1, article 95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Bridwell-Rabb, C. Iannuzzi, A. Pastore, and D. P. Barondeau, “Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis,” Biochemistry, vol. 51, no. 12, pp. 2506–2514, 2012. View at Publisher · View at Google Scholar · View at Scopus
  127. F. Bou-Abdallah, S. Adinolfi, A. Pastore, T. M. Laue, and N. Dennis Chasteen, “Iron binding and oxidation kinetics in frataxin CyaY of Escherichia coli,” Journal of Molecular Biology, vol. 341, no. 2, pp. 605–615, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. L. Loiseau, S. Ollagnier-de-Choudens, L. Nachin, M. Fontecave, and F. Barras, “Biogenesis of Fe-S cluster by the bacterial suf system. SufS and SufE form a new type of cysteine desulfurase,” The Journal of Biological Chemistry, vol. 278, no. 40, pp. 38352–38359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. F. W. Outten, O. Djaman, and G. Storz, “A suf operon requirement for Fe-S cluster assembly during Iron starvation in Escherichia coli,” Molecular Microbiology, vol. 52, no. 3, pp. 861–872, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. R. Kambampati and C. T. Lauhon, “Evidence for the transfer of sulfane Sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA,” The Journal of Biological Chemistry, vol. 275, no. 15, pp. 10727–10730, 2000. View at Publisher · View at Google Scholar · View at Scopus
  131. P. M. Palenchar, C. J. Buck, H. Cheng, T. J. Larson, and E. G. Mueller, “Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate,” The Journal of Biological Chemistry, vol. 275, no. 12, pp. 8283–8286, 2000. View at Publisher · View at Google Scholar · View at Scopus
  132. R. Kambampati and C. T. Lauhon, “Mnma and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli,” Biochemistry, vol. 42, no. 4, pp. 1109–1117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. T. Numata, Y. Ikeuchi, S. Fukai, T. Suzuki, and O. Nureki, “Snapshots of tRNA Sulphuration via an adenylated intermediate,” Nature, vol. 442, no. 7101, pp. 419–424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. T. Numata, Y. Ikeuchi, S. Fukai et al., “Crystallization and preliminary X-ray analysis of the tRNA thiolation enzyme MnmA from Escherichia coli complexed with tRNAGlu,” Acta Crystallographica F: Structural Biology and Crystallization Communications, vol. 62, no. 4, pp. 368–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. I. Moukadiri, M. J. Garzon, G. R. Bjork, and M. E. Armengod, “The output of the tRNA modification pathways controlled by the Escherichia coli MnmEG and MnmC enzymes depends on the growth conditions and the tRNA species,” Nucleic Acids Research, vol. 42, no. 4, pp. 2602–2623, 2013. View at Google Scholar
  136. N. D. Maynard, E. W. Birch, J. C. Sanghvi, L. Chen, M. V. Gutschow, and M. W. Covert, “A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy,” PLoS Genetics, vol. 6, no. 7, Article ID e1001017, 2010. View at Google Scholar · View at Scopus
  137. N. D. Maynard, D. N. MacKlin, K. Kirkegaard, and M. W. Covert, “Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting,” Molecular Systems Biology, vol. 8, article 567, 2012. View at Publisher · View at Google Scholar · View at Scopus
  138. J. L. Giel, A. D. Nesbit, E. L. Mettert, A. S. Fleischhacker, B. T. Wanta, and P. J. Kiley, “Regulation of Iron-Sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe-2S]-IscR in Escherichia coli,” Molecular Microbiology, vol. 87, pp. 478–492, 2013. View at Google Scholar
  139. K. S. Myers, H. Yan, I. M. Ong et al., “Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding,” PLoS Genetics, vol. 9, Article ID e1003565, 2013. View at Publisher · View at Google Scholar
  140. Y. Ishii, H. Yamada, T. Yamashino et al., “Deletion of the yhhP gene results in filamentous cell morphology in Escherichia coli,” Bioscience, Biotechnology and Biochemistry, vol. 64, no. 4, pp. 799–807, 2000. View at Google Scholar · View at Scopus