Applied Bionics and Biomechanics

Applied Bionics and Biomechanics / 2009 / Article

Open Access

Volume 6 |Article ID 702930 |

Tadayoshi Aoyama, Kosuke Sekiyama, Yasuhisa Hasegawa, Toshio Fukuda, "Optimal Limb Length Ratio of Quadruped Robot Minimising Joint Torque on Slopes", Applied Bionics and Biomechanics, vol. 6, Article ID 702930, 10 pages, 2009.

Optimal Limb Length Ratio of Quadruped Robot Minimising Joint Torque on Slopes

Received30 Apr 2009


This paper aims to determine an optimal structure for a quadruped robot, which will allow the robot’s joint torque sum to be minimised. An animal’s characteristic limb length ratio is a vital part of its overall morphology and the one that enables it to travel easily through its environment. For the same reason, a robot’s structure needs to be suitably designed for locomotion in its working environment. Joint torques are necessary to maintain the posture of the robot and to accelerate joint angles during walking motion, hence, minimisation of joint torques reduces energy consumption. We performed a numerical simulation in which we analysed the joint torques for various limb lengths and slope angles in order to determine the optimal structure of a robot walking on a slope. Our investigation determines that the optimal Ratio of Rear Leg Length (RRL) can be derived by the use of a simulation designed to determine the physical structure of quadruped robot. Our analysis suggests that joint torque will increase as the slope angle becomes steeper if the rear legs of the robot are shorter than its forelegs, and that joint torque will decrease as the slope angle declines if the robot’s forelegs are shorter than its rear legs. Finally, experimental results validated our simulation analysis.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.