Table of Contents Author Guidelines Submit a Manuscript
Advances in Bioinformatics
Volume 2010, Article ID 268925, 10 pages
http://dx.doi.org/10.1155/2010/268925
Review Article

Systems Biology: The Next Frontier for Bioinformatics

1Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
2Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
3Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
4Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, Parkville, VIC, 3010, Australia

Received 4 June 2010; Accepted 1 November 2010

Academic Editor: Anton Enright

Copyright © 2010 Vladimir A. Likić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Ideker, T. Galitski, and L. Hood, “A new approach to decoding life: systems biology,” Annual Review of Genomics and Human Genetics, vol. 2, pp. 343–372, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Kitano, “Computational systems biology,” Nature, vol. 420, no. 6912, pp. 206–210, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Kitano, “Systems biology: a brief overview,” Science, vol. 295, no. 5560, pp. 1662–1664, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. H. V. Westerhoff and B. O. Palsson, “The evolution of molecular biology into systems biology,” Nature Biotechnology, vol. 22, no. 10, pp. 1249–1252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Stelling, “Mathematical models in microbial systems biology,” Current Opinion in Microbiology, vol. 7, no. 5, pp. 513–518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, pp. 860–921, 2001. View at Google Scholar
  7. J. Craig Venter, M. D. Adams, E. W. Myers et al., “The sequence of the human genome,” Science, vol. 291, no. 5507, pp. 1304–1351, 2001. View at Publisher · View at Google Scholar
  8. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, vol. 270, no. 5235, pp. 467–470, 1995. View at Google Scholar
  9. D. A. Lashkari, J. L. DeRisi, J. H. Mccusker et al., “Yeast microarrays for genome wide parallel genetic and gene expression analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 24, pp. 13057–13062, 1997. View at Publisher · View at Google Scholar
  10. S. D. Patterson and R. H. Aebersold, “Proteomics: the first decade and beyond,” Nature Genetics, vol. 33, pp. 311–323, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. G. Oliver, M. K. Winson, D. B. Kell, and F. Baganz, “Systematic functional analysis of the yeast genome,” Trends in Biotechnology, vol. 16, no. 9, pp. 373–378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Fiehn, “Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks,” Comparative and Functional Genomics, vol. 2, no. 3, pp. 155–168, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Wiener, Cybernetics: Or Control and Communication in the Animan and the Machine, MIT Press, Cambridge, Mass, USA, 1946.
  14. M. D. Mesarovic, “Systems theory and biology—view of a theoretician,” in Systems Theory and Biology, M. D. Mesarovic, Ed., pp. 59–87, Springer, New York, NY, USA, 1968. View at Google Scholar
  15. L. von Bertalanffy, General System Theory, George Braziller, New York, NY, USA, 1969.
  16. H. Kacser and J. A. Burns, “The control of flux,” Symposia of the Society for Experimental Biology, vol. 27, pp. 65–104, 1973. View at Google Scholar · View at Scopus
  17. R. Heinrich and T. A. Rapoport, “A linear steady state treatment of enzymatic chains: general properties, control and effector strength,” European Journal of Biochemistry, vol. 42, no. 1, pp. 89–95, 1974. View at Google Scholar · View at Scopus
  18. H. Kacser and J. A. Burns, “The molecular basis of dominance,” Genetics, vol. 97, no. 3-4, pp. 639–666, 1981. View at Google Scholar · View at Scopus
  19. O. Wolkenhauer, “Systems biology: the reincarnation of systems theory applied in biology?” Briefings in Bioinformatics, vol. 2, no. 3, pp. 258–270, 2001. View at Google Scholar · View at Scopus
  20. S. A. Benner and A. M. Sismour, “Synthetic biology,” Nature Reviews Genetics, vol. 6, no. 7, pp. 533–543, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. McDaniel and R. Weiss, “Advances in synthetic biology: on the path from prototypes to applications,” Current Opinion in Biotechnology, vol. 16, no. 4, pp. 476–483, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Heinemann and S. Panke, “Synthetic biology—putting engineering into biology,” Bioinformatics, vol. 22, no. 22, pp. 2790–2799, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. L. Barrett, T. Y. Kim, H. U. Kim, B. Ø. Palsson, and S. Y. Lee, “Systems biology as a foundation for genome-scale synthetic biology,” Current Opinion in Biotechnology, vol. 17, no. 5, pp. 488–492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Mukherji and A. van Oudenaarden, “Synthetic biology: understanding biological design from synthetic circuits,” Nature Reviews Genetics, vol. 10, no. 12, pp. 859–871, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Vieites, M.-E. Guazzaroni, A. Beloqui, P. N. Golyshin, and M. Ferrer, “Metagenomics approaches in systems microbiology,” FEMS Microbiology Reviews, vol. 33, no. 1, pp. 236–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. E. T. Liu, “Systems biology, integrative biology, predictive biology,” Cell, vol. 121, no. 4, pp. 505–506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. P. M. O'Callaghan and D. C. James, “Systems biotechnology of mammalian cell factories,” Briefings in Functional Genomics and Proteomics, vol. 7, no. 2, pp. 95–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. A. Tomlins, M. A. Rubin, and A. M. Chinnaiyan, “Integrative biology of prostate cancer progression,” Annual Review of Pathology, vol. 1, pp. 243–271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. E. T. Liu, “Integrative biology—a strategy for systems biomedicine,” Nature Reviews Genetics, vol. 10, no. 1, pp. 64–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. S. Riesenfeld, P. D. Schloss, and J. Handelsman, “Metagenomics: genomic analysis of microbial communities,” Annual Review of Genetics, vol. 38, pp. 525–552, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. W. Kirschner, “The meaning of systems biology,” Cell, vol. 121, no. 4, pp. 503–504, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. W. Cowley Jr., “The elusive field of systems biology,” Physiological Genomics, vol. 16, pp. 285–286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Kohl, E. J. Crampin, T. A. Quinn, and D. Noble, “Systems biology: an approach,” Clinical Pharmacology and Therapeutics, vol. 88, no. 1, pp. 25–33, 2010. View at Publisher · View at Google Scholar
  34. V. A. McKusick and F. H. Ruddle, “A new discipline, a new name, a new journal,” Genomics, vol. 1, no. 1, pp. 1–2, 1987. View at Google Scholar · View at Scopus
  35. A. M. Maxam and W. Gilbert, “A new method for sequencing DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 2, pp. 560–564, 1977. View at Google Scholar · View at Scopus
  36. F. Sanger and A. R. Coulson, “A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase,” Journal of Molecular Biology, vol. 94, no. 3, pp. 441–448, 1975. View at Google Scholar · View at Scopus
  37. L. M. Smith, J. Z. Sanders, R. J. Kaiser et al., “Fluorescence detection in automated DNA sequence analysis,” Nature, vol. 321, no. 6071, pp. 674–679, 1986. View at Google Scholar
  38. L. E. Hood, M. W. Hunkapiller, and L. M. Smith, “Automated DNA sequencing and analysis of the human genome,” Genomics, vol. 1, no. 3, pp. 201–212, 1987. View at Google Scholar · View at Scopus
  39. F. S. Collins, M. Morgan, and A. Patrinos, “The human genome project: lessons from large-scale biology,” Science, vol. 300, no. 5617, pp. 286–290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Hieter and M. Boguski, “Functional genomics: it's all how you read it,” Science, vol. 278, no. 5338, pp. 601–602, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Rastan and L. J. Beeley, “Functional genomics: going forwards from the databases,” Current Opinion in Genetics and Development, vol. 7, no. 6, pp. 777–783, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Somerville and S. Somerville, “Plant functional genomics,” Science, vol. 285, no. 5426, pp. 380–383, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Brent, “Genomic biology,” Cell, vol. 100, no. 1, pp. 169–183, 2000. View at Google Scholar · View at Scopus
  44. P. E. Griffiths and K. Stotz, “Genes in the postgenomic era,” Theoretical Medicine and Bioethics, vol. 27, no. 6, pp. 499–521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. G. P. Rédei, C. Koncz, and J. D. Phillips, “Changing images of the gene,” Advances in Genetics, vol. 56, pp. 53–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. T. R. Gingeras, “Origin of phenotypes: genes and transcripts,” Genome Research, vol. 17, no. 6, pp. 682–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. M. B. Gerstein, C. Bruce, J. S. Rozowsky et al., “What is a gene, post-ENCODE? History and updated definition,” Genome Research, vol. 17, no. 6, pp. 669–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Portin, “The elusive concept of the gene,” Hereditas, vol. 146, no. 3, pp. 112–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Carninci, “Tagging mammalian transcription complexity,” Trends in Genetics, vol. 22, no. 9, pp. 501–510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Kapranov, A. T. Willingham, and T. R. Gingeras, “Genome-wide transcription and the implications for genomic organization,” Nature Reviews Genetics, vol. 8, no. 6, pp. 413–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. C. Avise, “Evolving genomic metaphors: a new look at the language of DNA,” Science, vol. 294, no. 5540, pp. 86–87, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. P. P. Amaral, M. E. Dinger, T. R. Mercer, and J. S. Mattick, “The eukaryotic genome as an RNA machine,” Science, vol. 319, no. 5871, pp. 1787–1789, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. J. S. Mattick, “The functional genomics of noncoding RNA,” Science, vol. 309, no. 5740, pp. 1527–1528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. K. C. Martin and A. Ephrussi, “mRNA localization: gene expression in the spatial dimension,” Cell, vol. 136, no. 4, pp. 719–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Lazebnik, “Can a biologist fix a radio?—Or, what I learned while studying apoptosis,” Cancer Cell, vol. 2, no. 3, pp. 179–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Weng, U. S. Bhalla, and R. Iyengar, “Complexity in biological signaling systems,” Science, vol. 284, no. 5411, pp. 92–96, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. G. M. Whitesides and R. F. Ismagilov, “Complexity in chemistry,” Science, vol. 284, no. 5411, pp. 89–92, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Ross and A. P. Arkin, “Complex systems: from chemistry to systems biology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6433–6434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Goldenfeld and L. P. Kadanoff, “Simple lessons from complexity,” Science, vol. 284, no. 5411, pp. 87–89, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. J. I. Castrillo and S. G. Oliver, “Metabolomics and systems biology in Saccharomyces cerevisiae,” in The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research, A. J. P. Brown, Ed., pp. 3–18, Springer, Heidelberg, Germany, 2006. View at Google Scholar
  61. T. Ideker, V. Thorsson, J. A. Ranish et al., “Integrated genomic and proteomic analyses of a systematically perturbed metabolic network,” Science, vol. 292, no. 5518, pp. 929–934, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Ge, A. J. M. Walhout, and M. Vidal, “Integrating 'omic' information: a bridge between genomics and systems biology,” Trends in Genetics, vol. 19, no. 10, pp. 551–560, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. C. L. de Hoog and M. Mann, “Proteomics,” Annual Review of Genomics and Human Genetics, vol. 5, pp. 267–293, 2004. View at Publisher · View at Google Scholar
  64. F. J. Bruggeman and H. V. Westerhoff, “The nature of systems biology,” Trends in Microbiology, vol. 15, no. 1, pp. 45–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Ideker and D. Lauffenburger, “Building with a scaffold: emerging strategies for high- to low-level cellular modeling,” Trends in Biotechnology, vol. 21, no. 6, pp. 255–262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Laubenbacher and A. S. Jarrah, “Algebraic models of biochemical networks,” Methods in Enzymology, vol. 467, no. C, pp. 163–196, 2009. View at Publisher · View at Google Scholar
  67. S. Huang, “Back to the biology in systems biology: what can we learn from biomolecular networks?” Brief Funct Genomic Proteomic, vol. 2, no. 4, pp. 279–297, 2004. View at Google Scholar · View at Scopus
  68. M. A. O'Malley and J. Dupré, “Fundamental issues in systems biology,” BioEssays, vol. 27, no. 12, pp. 1270–1276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. R. M. May, “Uses and abuses of mathematics in biology,” Science, vol. 303, no. 5659, pp. 790–793, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. J. J. Tyson, K. Chen, and B. Novak, “Network dynamics and cell physiology,” Nature Reviews Molecular Cell Biology, vol. 2, no. 12, pp. 908–916, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak, and J. J. Tyson, “Integrative analysis of cell cycle control in budding yeast,” Molecular Biology of the Cell, vol. 15, no. 8, pp. 3841–3862, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Klipp, B. Nordlander, R. Krüger, P. Gennemark, and S. Hohmann, “Integrative model of the response of yeast to osmotic shock,” Nature Biotechnology, vol. 23, no. 8, pp. 975–982, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. A. M. Feist, C. S. Henry, J. L. Reed et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Molecular Systems Biology, vol. 3, article 121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. B. M. Bakker, P. A. M. Michels, F. R. Opperdoes, and H. V. Westerhoff, “What controls glycolysis in bloodstream form Trypanosoma brucei?” Journal of Biological Chemistry, vol. 274, no. 21, pp. 14551–14559, 1999. View at Publisher · View at Google Scholar · View at Scopus
  75. N. C. Duarte, M. J. Herrgård, and B. Ø. Palsson, “Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model,” Genome Research, vol. 14, no. 7, pp. 1298–1309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Teusink, J. Passarge, C. A. Reijenga et al., “Can yeast glycolysis be understood terms of vitro kinetics of the constituent enzymes? Testing biochemistry,” European Journal of Biochemistry, vol. 267, no. 17, pp. 5313–5329, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Smallbone, E. Simeonidis, N. Swainston, and P. Mendes, “Towards a genome-scale kinetic model of cellular metabolism,” BMC Systems Biology, vol. 4, article 6, 2010. View at Publisher · View at Google Scholar
  78. L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, “From molecular to modular cell biology,” Nature, vol. 402, no. 6761, pp. C47–C52, 1999. View at Google Scholar · View at Scopus
  79. J. J. Hornberg, F. J. Bruggeman, H. V. Westerhoff, and J. Lankelma, “Cancer: a systems biology disease,” BioSystems, vol. 83, no. 2-3, pp. 81–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Kohl and D. Noble, “Systems biology and the virtual physiological human,” Molecular Systems Biology, vol. 5, article 292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. L. Sang, D.-Y. Lee, and Y. K. Tae, “Systems biotechnology for strain improvement,” Trends in Biotechnology, vol. 23, no. 7, pp. 349–358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. C. A. Argmann, P. Chambon, and J. Auwerx, “Mouse phenogenomics: the fast track to "systems metabolism",” Cell Metabolism, vol. 2, no. 6, pp. 349–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. J. M. Zahn and S. K. Kim, “Systems biology of aging in four species,” Current Opinion in Biotechnology, vol. 18, no. 4, pp. 355–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. J. S. Yuan, D. W. Galbraith, S. Y. Dai, P. Griffin, and C. N. Stewart Jr., “Plant systems biology comes of age,” Trends in Plant Science, vol. 13, no. 4, pp. 165–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Hynne, S. Danø, and P. G. Sørensen, “Full-scale model of glycolysis in Saccharomyces cerevisiae,” Biophysical Chemistry, vol. 94, no. 1-2, pp. 121–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. M.-A. Albert, J. R. Haanstra, V. Hannaert et al., “Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei,” Journal of Biological Chemistry, vol. 280, no. 31, pp. 28306–28315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. P. S. Kim, D. Levy, and P. P. Lee, “Modeling and simulation of the immune system as a self-regulating network,” Methods in Enzymology, vol. 467, no. C, pp. 79–109, 2009. View at Publisher · View at Google Scholar
  88. D. Noble, “Modeling the heart—from genes to cells to the whole organ,” Science, vol. 295, no. 5560, pp. 1678–1682, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. B. Schwikowski, P. Uetz, and S. Fields, “A network of protein-protein interactions in yeast,” Nature Biotechnology, vol. 18, no. 12, pp. 1257–1261, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. T. I. Lee, N. J. Rinaldi, F. Robert et al., “Transcriptional regulatory networks in Saccharomyces cerevisiae,” Science, vol. 298, no. 5594, pp. 799–804, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Güell, V. van Noort, E. Yus et al., “Transcriptome complexity in a genome-reduced bacterium,” Science, vol. 326, no. 5957, pp. 1268–1271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Kühner, V. van Noort, M. J. Betts et al., “Proteome organization in a genome-reduced bacterium,” Science, vol. 326, no. 5957, pp. 1235–1240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. E. Yus, T. Maier, K. Michalodimitrakis et al., “Impact of genome reduction on bacterial metabolism and its regulation,” Science, vol. 326, no. 5957, pp. 1263–1268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in the transcriptional regulation network of Escherichia coli,” Nature Genetics, vol. 31, no. 1, pp. 64–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. N. J. Krogan, G. Cagney, H. Yu et al., “Global landscape of protein complexes in the yeast Saccharomyces cerevisiae,” Nature, vol. 440, no. 7084, pp. 637–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Tarassov, V. Messier, C. R. Landry et al., “An in vivo map of the yeast protein interactome,” Science, vol. 320, no. 5882, pp. 1465–1470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Tang, F. Pingitore, A. Mukhopadhyay, R. Phan, T. C. Hazen, and J. D. Keasling, “Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry,” Journal of Bacteriology, vol. 189, no. 3, pp. 940–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. T. del Castillo, J. L. Ramos, J. J. Rodríguez-Herva, T. Fuhrer, U. Sauer, and E. Duque, “Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis,” Journal of Bacteriology, vol. 189, no. 14, pp. 5142–5152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. O. Schilling, O. Frick, C. Herzberg et al., “Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: transcription regulation is important but not sufficient to account for metabolic adaptation,” Applied and Environmental Microbiology, vol. 73, no. 2, pp. 499–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Saito, M. Robert, H. Kochi et al., “Metabolite profiling reveals YihU as a novel hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism in Escherichia coli,” Journal of Biological Chemistry, vol. 284, no. 24, pp. 16442–16451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Krantz, D. Ahmadpour, L.-G. Ottosson et al., “Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway,” Molecular Systems Biology, vol. 5, article 281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Koide, T. Hayata, and K. W. Y. Cho, “Xenopus as a model system to study transcriptional regulatory networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 14, pp. 4943–4948, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Giot, J. S. Bader, C. Brouwer et al., “A protein interaction map of Drosophila melanogaster,” Science, vol. 302, no. 5651, pp. 1727–1736, 2003. View at Publisher · View at Google Scholar
  104. Y. J. Tang, R. Chakraborty, H. G. Martín, J. Chu, T. C. Hazen, and J. D. Keasling, “Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid,” Applied and Environmental Microbiology, vol. 73, no. 12, pp. 3859–3864, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. B. B. Aldridge, J. M. Burke, D. A. Lauffenburger, and P. K. Sorger, “Physicochemical modelling of cell signalling pathways,” Nature Cell Biology, vol. 8, no. 11, pp. 1195–1203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. N. Ishii, K. Nakahigashi, T. Baba et al., “Multiple high-throughput analyses monitor the response of E. coli to perturbations,” Science, vol. 316, no. 5824, pp. 593–597, 2007. View at Publisher · View at Google Scholar
  107. S. Tännler, E. Fischer, D. Le Coq et al., “CcpN controls central carbon fluxes in Bacillus subtilis,” Journal of Bacteriology, vol. 190, no. 18, pp. 6178–6187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. H. Ochman and R. Raghavan, “Systems biology. Excavating the functional landscape of bacterial cells,” Science, vol. 326, no. 5957, pp. 1200–1201, 2009. View at Publisher · View at Google Scholar
  109. G. Stephanopoulos, “Metabolic fluxes and metabolic engineering,” Metabolic Engineering, vol. 1, no. 1, pp. 1–11, 1999. View at Publisher · View at Google Scholar · View at Scopus
  110. U. Sauer, “Metabolic networks in motion: 13C-based flux analysis,” Molecular Systems Biology, vol. 2, article 62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. E. P. Gianchandani, D. L. Brautigan, and J. A. Papin, “Systems analyses characterize integrated functions of biochemical networks,” Trends in Biochemical Sciences, vol. 31, no. 5, pp. 284–291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. N.-M. Grüning, H. Lehrach, and M. Ralser, “Regulatory crosstalk of the metabolic network,” Trends in Biochemical Sciences, vol. 35, no. 4, pp. 220–227, 2010. View at Publisher · View at Google Scholar
  113. J. Nielsen and S. Oliver, “The next wave in metabolome analysis,” Trends in Biotechnology, vol. 23, no. 11, pp. 544–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. N. Zamboni and U. Sauer, “Novel biological insights through metabolomics and 13C-flux analysis,” Current Opinion in Microbiology, vol. 12, no. 5, pp. 553–558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. W. Wiechert and K. Nöh, “From stationary to instationary metabolic flux analysis,” Advances in Biochemical Engineering/Biotechnology, vol. 92, pp. 145–172, 2005. View at Google Scholar · View at Scopus
  116. Y. J. Tang, H. G. Martin, S. Myers, S. Rodriguez, E. E. K. Baidoo, and J. D. Keasling, “Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling,” Mass Spectrometry Reviews, vol. 28, no. 2, pp. 362–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. M. R. Antoniewicz, J. K. Kelleher, and G. Stephanopoulos, “Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions,” Metabolic Engineering, vol. 9, no. 1, pp. 68–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. J. D. Young, J. L. Walther, M. R. Antoniewicz, H. Yoo, and G. Stephanopoulos, “An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis,” Biotechnology and Bioengineering, vol. 99, no. 3, pp. 686–699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Hucka, A. Finney, B. J. Bornstein et al., “Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project,” Systems Biology, vol. 1, no. 1, pp. 41–53, 2004. View at Publisher · View at Google Scholar
  120. N. L. Novère, M. Hucka, H. Mi et al., “The systems biology graphical notation,” Nature Biotechnology, vol. 27, no. 8, pp. 735–741, 2009. View at Publisher · View at Google Scholar
  121. H. M. Sauro, M. Hucka, A. Finney et al., “Next generation simulation tools: the systems biology workbench and BioSPICE integration,” OMICS, vol. 7, no. 4, pp. 355–372, 2003. View at Google Scholar · View at Scopus
  122. A. Funahashi, M. Morohashi, H. Kitano, and N. Tanimura, “CellDesigner: a process diagram editor for gene-regulatory and biochemical networks,” BIOSILICO, vol. 1, pp. 159–162, 2003. View at Google Scholar
  123. P. Mendes, S. Hoops, S. Sahle, R. Gauges, J. Dada, and U. Kummer, “Computational modeling of biochemical networks using COPASI,” Methods in Molecular Biology, vol. 500, pp. 17–59, 2009. View at Google Scholar · View at Scopus
  124. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and E. W. Sayers, “GenBank,” Nucleic Acids Research, vol. 37, no. 1, pp. D26–D31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Kouranov, L. Xie, J. de la Cruz et al., “The RCSB PDB information portal for structural genomics,” Nucleic Acids Research, vol. 34, pp. D302–D305, 2006. View at Google Scholar · View at Scopus
  126. R. D. Finn, J. Mistry, J. Tate et al., “The Pfam protein families database,” Nucleic Acids Research, vol. 38, supplement 1, pp. D211–D222, 2010. View at Publisher · View at Google Scholar
  127. R. Caspi, T. Altman, J. M. Dale et al., “The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases,” Nucleic Acids Research, vol. 38, supplement 1, pp. D473–D479, 2010. View at Publisher · View at Google Scholar
  128. L. Matthews, G. Gopinath, M. Gillespie et al., “Reactome knowledgebase of human biological pathways and processes,” Nucleic Acids Research, vol. 37, no. 1, pp. D619–D622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Kuhn, D. Szklarczyk, A. Franceschini et al., “STITCH 2: an interaction network database for small molecules and proteins,” Nucleic Acids Research, vol. 38, supplement 1, pp. D552–D556, 2010. View at Publisher · View at Google Scholar
  130. B. Lehne and T. Schlitt, “Protein-protein interaction databases: keeping up with growing interactomes,” Human Genomics, vol. 3, no. 3, pp. 291–297, 2009. View at Google Scholar · View at Scopus
  131. N. Le Novère, B. Bornstein, A. Broicher et al., “BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems,” Nucleic Acids Research, vol. 34, pp. D689–D691, 2006. View at Google Scholar · View at Scopus
  132. P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software Environment for integrated models of biomolecular interaction networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. P. D. Karp, S. M. Paley, M. Krummenacker et al., “Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology,” Briefings in Bioinformatics, vol. 11, no. 1, pp. 40–79, 2009. View at Publisher · View at Google Scholar
  134. J. L. Reed and B. Ø. Palsson, “Thirteen years of building constraint-based in silico models of Escherichia coli,” Journal of Bacteriology, vol. 185, no. 9, pp. 2692–2699, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. C. H. Schilling, J. S. Edwards, and B. O. Palsson, “Toward metabolic phenomics: analysis of genomic data using flux balances,” Biotechnology Progress, vol. 15, no. 3, pp. 288–295, 1999. View at Publisher · View at Google Scholar · View at Scopus
  136. P. Dolezal, V. Likic, J. Tachezy, and T. Lithgow, “Evolution of the molecular machines for protein import into mitochondria,” Science, vol. 313, no. 5785, pp. 314–318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Nielsen, “Systems biology of lipid metabolism: from yeast to human,” FEBS Letters, vol. 583, no. 24, pp. 3905–3913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. Y. Ohashi, A. Hirayama, T. Ishikawa et al., “Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS,” Molecular BioSystems, vol. 4, no. 2, pp. 135–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. P. Brazhnik, A. de la Fuente, and P. Mendes, “Gene networks: how to put the function in genomics,” Trends in Biotechnology, vol. 20, no. 11, pp. 467–472, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. E. Alm and A. P. Arkin, “Biological networks,” Current Opinion in Structural Biology, vol. 13, no. 2, pp. 193–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Wullschleger, R. Loewith, and M. N. Hall, “TOR signaling in growth and metabolism,” Cell, vol. 124, no. 3, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at Scopus