Table of Contents Author Guidelines Submit a Manuscript
Advances in Bioinformatics
Volume 2010 (2010), Article ID 423589, 19 pages
http://dx.doi.org/10.1155/2010/423589
Review Article

Protein Bioinformatics Infrastructure for the Integration and Analysis of Multiple High-Throughput “omics” Data

1Department of Computer & Information Sciences, Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19711, USA
2Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA

Received 4 October 2009; Accepted 5 January 2010

Academic Editor: Huixiao Hong

Copyright © 2010 Chuming Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. W. Parfrey, D. J. G. Lahr, and L. A. Katz, “The dynamic nature of eukaryotic genomes,” Molecular Biology and Evolution, vol. 25, no. 4, pp. 787–794, 2008. View at Publisher · View at Google Scholar · View at PubMed
  2. V. E. Velculescu, L. Zhang, W. Zhou et al., “Characterization of the yeast transcriptome,” Cell, vol. 88, no. 2, pp. 243–251, 1997. View at Publisher · View at Google Scholar
  3. N. L. Anderson and N. G. Anderson, “Proteome and proteomics: new technologies, new concepts, and new words,” Electrophoresis, vol. 19, no. 11, pp. 1853–1861, 1998. View at Google Scholar
  4. S. G. Oliver, M. K. Winson, D. B. Kell, and F. Baganz, “Systematic functional analysis of the yeast genome,” Trends in Biotechnology, vol. 16, no. 9, pp. 373–378, 1998. View at Publisher · View at Google Scholar
  5. C. Sanchez, C. Lachaize, F. Janody et al., “Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database,” Nucleic Acids Research, vol. 27, no. 1, pp. 89–94, 1999. View at Publisher · View at Google Scholar
  6. D. A. Kulesh, D. R. Clive, D. S. Zarlenga, and J. J. Greene, “Identification of interferon-modulated proliferation-related cDNA sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 23, pp. 8453–8457, 1987. View at Google Scholar
  7. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, vol. 270, no. 5235, pp. 467–470, 1995. View at Google Scholar
  8. C. M. Martin, K. Astbury, L. McEvoy, S. O'Toole, O. Sheils, and J. J. O'Leary, “Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy,” Methods in Molecular Biology, vol. 511, pp. 333–359, 2009. View at Publisher · View at Google Scholar
  9. R. Aebersold and M. Mann, “Mass spectrometry-based proteomics,” Nature, vol. 422, no. 6928, pp. 198–207, 2003. View at Publisher · View at Google Scholar · View at PubMed
  10. S. E. Ong and M. Mann, “Mass spectrometry-based proteomics turns quantitative,” Nature Chemical Biology, vol. 1, no. 5, pp. 252–262, 2005. View at Publisher · View at Google Scholar · View at PubMed
  11. A. Hye, S. Lynham, M. Thambisetty et al., “Proteome-based plasma biomarkers for Alzheimer's disease,” Brain, vol. 129, no. 11, pp. 3042–3050, 2006. View at Publisher · View at Google Scholar · View at PubMed
  12. S. Decramer, S. Wittke, H. Mischak et al., “Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis,” Nature Medicine, vol. 12, no. 4, pp. 398–400, 2006. View at Publisher · View at Google Scholar · View at PubMed
  13. G. G. Harrigan and R. Goodacre, Eds., Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis, Kluwer Academic Publishers, Boston, Mass, USA, 2003.
  14. J. C. Lindon, E. Holmes, M. E. Bollard, E. G. Stanley, and J. K. Nicholson, “Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis,” Biomarkers, vol. 9, no. 1, pp. 1–31, 2004. View at Publisher · View at Google Scholar · View at PubMed
  15. O. Fiehn, “Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks,” Comparative and Functional Genomics, vol. 2, no. 3, pp. 155–168, 2001. View at Publisher · View at Google Scholar · View at PubMed
  16. D. I. Ellis, W. B. Dunn, J. L. Griffin, J. W. Allwood, and R. Goodacre, “Metabolic fingerprinting as a diagnostic tool,” Pharmacogenomics, vol. 8, no. 9, pp. 1243–1266, 2007. View at Publisher · View at Google Scholar · View at PubMed
  17. R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor: open software development for computational biology and bioinformatics,” Genome Biology, vol. 5, no. 10, p. R80, 2004. View at Google Scholar
  18. F. Lopez, J. Textoris, A. Bergon et al., “TranscriptomeBrowser: a powerful and flexible toolbox to explore productively the transcriptional landscape of the Gene Expression Omnibus database,” PLoS ONE, vol. 3, no. 12, article e4001, 2008. View at Publisher · View at Google Scholar · View at PubMed
  19. J. K. Eng, A. L. McCormack, and J. R. Yates III, “An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database,” Journal of the American Society for Mass Spectrometry, vol. 5, no. 11, pp. 976–989, 1994. View at Google Scholar
  20. D. N. Perkins, D. J. C. Pappin, D. M. Creasy, and J. S. Cottrell, “Probability-based protein identification by searching sequence databases using mass spectrometry data,” Electrophoresis, vol. 20, no. 18, pp. 3551–3567, 1999. View at Google Scholar
  21. R. Craig and R. C. Beavis, “TANDEM: matching proteins with tandem mass spectra,” Bioinformatics, vol. 20, no. 9, pp. 1466–1467, 2004. View at Publisher · View at Google Scholar · View at PubMed
  22. A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold, “Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search,” Analytical Chemistry, vol. 74, no. 20, pp. 5383–5392, 2002. View at Publisher · View at Google Scholar
  23. A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold, “A statistical model for identifying proteins by tandem mass spectrometry,” Analytical Chemistry, vol. 75, no. 17, pp. 4646–4658, 2003. View at Publisher · View at Google Scholar
  24. J. Xia, T. C. Bjorndahl, P. Tang, and D. S. Wishart, “MetaboMiner—semi-automated identification of metabolites from 2D NMR spectra of complex biofluids,” BMC Bioinformatics, vol. 9, article 507, 2008. View at Publisher · View at Google Scholar · View at PubMed
  25. C. Prieto and J. De Las Rivas, “APID: agile protein interaction data analyzer,” Nucleic Acids Research, vol. 34, pp. W298–W302, 2006. View at Google Scholar
  26. R. Apweiler, “The universal protein resource (UniProt) in 2010,” Nucleic Acids Research, vol. 38, supplement 1, pp. D142–D148, 2009. View at Publisher · View at Google Scholar · View at PubMed
  27. K. D. Pruitt, T. Tatusova, and D. R. Maglott, “NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins,” Nucleic Acids Research, vol. 35, supplement 1, pp. D61–D65, 2007. View at Publisher · View at Google Scholar · View at PubMed
  28. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler, “GenBank,” Nucleic Acids Research, vol. 36, supplement 1, pp. D25–D30, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. G. Cochrane, R. Akhtar, J. Bonfield et al., “Petabyte-scale innovations at the European Nucleotide Archive,” Nucleic Acids Research, vol. 37, supplement 1, pp. D19–D25, 2009. View at Publisher · View at Google Scholar · View at PubMed
  30. E. Kaminuma, J. Mashima, Y. Kodama et al., “DDBJ launches a new archive database with analytical tools for next-generation sequence data,” Nucleic Acids Research, vol. 38, supplement 1, pp. D33–D38, 2009. View at Publisher · View at Google Scholar · View at PubMed
  31. J. U. Pontius, L. Wagner, and G. D. Schuler, “UniGene: a unified view of the transcriptome,” in The NCBI Handbook, National Center for Biotechnology Information, Bethesda, Md, USA, 2003. View at Google Scholar
  32. S. Tweedie, M. Ashburner, K. Falls et al., “FlyBase: enhancing Drosophila Gene Ontology annotations,” Nucleic Acids Research, vol. 37, supplement 1, pp. D555–D559, 2009. View at Publisher · View at Google Scholar · View at PubMed
  33. C. J. Bult, J. T. Eppig, J. A. Kadin et al., “The Mouse Genome Database (MGD): mouse biology and model systems,” Nucleic Acids Research, vol. 36, supplement 1, pp. D724–D728, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. R. Nash, S. Weng, B. Hitz et al., “Expanded protein information at SGD: new pages and proteome browser,” Nucleic Acids Research, vol. 35, supplement 1, pp. D468–D471, 2007. View at Publisher · View at Google Scholar · View at PubMed
  35. T. Bieri, D. Blasiar, P. Ozersky et al., “WormBase: new content and better access,” Nucleic Acids Research, vol. 35, supplement 1, pp. D506–D510, 2007. View at Publisher · View at Google Scholar · View at PubMed
  36. D. Swarbreck, C. Wilks, P. Lamesch et al., “The Arabidopsis Information Resource (TAIR): gene structure and function annotation,” Nucleic Acids Research, vol. 36, supplement 1, pp. D1009–D1014, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. E. W. Sayers, T. Barrett, D. A. Benson et al., “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Research, vol. 37, supplement 1, pp. D5–D15, 2009. View at Publisher · View at Google Scholar · View at PubMed
  38. T. Barrett, D. B. Troup, S. E. Wilhite et al., “NCBI GEO: archive for high-throughput functional genomic data,” Nucleic Acids Research, vol. 37, supplement 1, pp. D885–D890, 2009. View at Publisher · View at Google Scholar · View at PubMed
  39. V. Praz and P. Bucher, “CleanEx: new data extraction and merging tools based on MeSH term annotation,” Nucleic Acids Research, vol. 37, supplement 1, pp. D880–D884, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. M. Diehn, G. Sherlock, G. Binkley et al., “SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data,” Nucleic Acids Research, vol. 31, no. 1, pp. 219–223, 2003. View at Publisher · View at Google Scholar
  41. H. Parkinson, M. Kapushesky, N. Kolesnikov et al., “Array express update—from an archive of functional genomics experiments to the atlas of gene expression,” Nucleic Acids Research, vol. 37, supplement 1, pp. D868–D872, 2009. View at Publisher · View at Google Scholar · View at PubMed
  42. R. Craig, J. P. Cortens, and R. C. Beavis, “Open source system for analyzing, validating, and storing protein identification data,” Journal of Proteome Research, vol. 3, no. 6, pp. 1234–1242, 2004. View at Publisher · View at Google Scholar · View at PubMed
  43. J. A. Vizcaíno, R. Côté, F. Reisinger et al., “A guide to the Proteomics Identifications Database proteomics data repository,” Proteomics, vol. 9, no. 18, pp. 4276–4283, 2009. View at Publisher · View at Google Scholar · View at PubMed
  44. L. Ji, T. Barrett, O. Ayanbule et al., “NCBI Peptidome: a new repository for mass spectrometry proteomics data,” Nucleic Acids Research, vol. 38, supplement 1, pp. D731–D735, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. E. W. Deutsch, “The PeptideAtlas Project,” Methods in Molecular Biology, vol. 604, pp. 285–296, 2010. View at Google Scholar
  46. C. Hoogland, K. Mostaguir, J.-C. Sanchez, D. F. Hochstrasser, and R. D. Appel, “SWISS-2DPAGE, ten years later,” Proteomics, vol. 4, no. 8, pp. 2352–2356, 2004. View at Publisher · View at Google Scholar · View at PubMed
  47. M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa, “KEGG for representation and analysis of molecular networks involving diseases and drugs,” Nucleic Acids Research, vol. 38, supplement 1, pp. D355–D360, 2010. View at Publisher · View at Google Scholar · View at PubMed
  48. R. Caspi, T. Altman, J. M. Dale et al., “The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases,” Nucleic Acids Research, vol. 38, supplement 1, pp. D473–D479, 2009. View at Publisher · View at Google Scholar · View at PubMed
  49. V. A. McKusick, Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders, Johns Hopkins University Press, Baltimore, Md, USA, 12th edition, 1998.
  50. K. A. Frazer, D. G. Ballinger, D. R. Cox et al., “A second generation human haplotype map of over 3.1 million SNPs,” Nature, vol. 449, no. 7164, pp. 851–861, 2007. View at Publisher · View at Google Scholar · View at PubMed
  51. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar · View at PubMed
  52. S. Kerrien, Y. Alam-Faruque, B. Aranda et al., “IntAct—open source resource for molecular interaction data,” Nucleic Acids Research, vol. 35, supplement 1, pp. D561–D565, 2007. View at Publisher · View at Google Scholar · View at PubMed
  53. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg, “The database of interacting proteins: 2004 update,” Nucleic Acids Research, pp. D449–D451, 2004. View at Google Scholar
  54. J. S. Garavelli, “The RESID database of protein modifications as a resource and annotation tool,” Proteomics, vol. 4, no. 6, pp. 1527–1533, 2004. View at Publisher · View at Google Scholar · View at PubMed
  55. P. V. Hornbeck, I. Chabra, J. M. Kornhauser, E. Skrzypek, and B. Zhang, “PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation,” Proteomics, vol. 4, no. 6, pp. 1551–1561, 2004. View at Publisher · View at Google Scholar · View at PubMed
  56. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Google Scholar
  57. A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “SCOP: a structural classification of proteins database for the investigation of sequences and structures,” Journal of Molecular Biology, vol. 247, no. 4, pp. 536–540, 1995. View at Publisher · View at Google Scholar · View at PubMed
  58. L. H. Greene, T. E. Lewis, S. Addou et al., “The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution,” Nucleic Acids Research, vol. 35, supplement 1, pp. D291–D297, 2007. View at Publisher · View at Google Scholar · View at PubMed
  59. J. Chen, J. B. Anderson, C. DeWeese-Scott et al., “MMDB: entrez's 3D-structure database,” Nucleic Acids Research, vol. 31, no. 1, pp. 474–477, 2003. View at Publisher · View at Google Scholar
  60. R. A. Laskowski, “PDBsum new things,” Nucleic Acids Research, vol. 37, supplement 1, pp. D355–D359, 2009. View at Publisher · View at Google Scholar · View at PubMed
  61. U. Pieper, N. Eswar, B. M. Webb et al., “MODBASE, a database of annotated comparative protein structure models and associated resources,” Nucleic Acids Research, vol. 37, supplement 1, pp. D347–D354, 2009. View at Publisher · View at Google Scholar · View at PubMed
  62. C. H. Wu, A. Nikolskaya, H. Huang et al., “PIRSF: family classification system at the Protein Information Resource,” Nucleic Acids Research, vol. 32, supplement 1, pp. D112–D114, 2004. View at Google Scholar
  63. R. D. Finn, J. Mistry, J. Tate et al., “The Pfam protein families database,” Nucleic Acids Research, vol. 38, supplement 1, pp. D211–D222, 2009. View at Publisher · View at Google Scholar · View at PubMed
  64. S. Hunter, R. Apweiler, T. K. Attwood et al., “InterPro: the integrative protein signature database,” Nucleic Acids Research, vol. 37, supplement 1, pp. D211–D215, 2009. View at Publisher · View at Google Scholar · View at PubMed
  65. H. Mi, N. Guo, A. Kejariwal, and P. D. Thomas, “PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways,” Nucleic Acids Research, vol. 35, supplement 1, pp. D247–D252, 2007. View at Publisher · View at Google Scholar · View at PubMed
  66. I. Letunic, T. Doerks, and P. Bork, “SMART 6: recent updates and new developments,” Nucleic Acids Research, vol. 37, supplement 1, pp. D229–D232, 2009. View at Publisher · View at Google Scholar · View at PubMed
  67. R. Stevens, J. Zhao, and C. Goble, “Using provenance to manage knowledge of in silico experiments,” Briefings in Bioinformatics, vol. 8, no. 3, pp. 183–194, 2007. View at Publisher · View at Google Scholar · View at PubMed
  68. P. G. A. Pedrioli, J. K. Eng, R. Hubley et al., “A common open representation of mass spectrometry data and its application to proteomics research,” Nature Biotechnology, vol. 22, no. 11, pp. 1459–1466, 2004. View at Publisher · View at Google Scholar · View at PubMed
  69. S. Orchard, L. Montechi-Palazzi, E. W. Deutsch et al., “Five years of progress in the standardization of proteomics data 4th annual spring workshop of the HUPO-proteomics standards initiative—April 23–25, 2007. Ecole Nationale Supérieure (ENS), Lyon, France,” Proteomics, vol. 7, no. 19, pp. 3436–3440, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. T. F. Rayner, P. Rocca-Serra, P. T. Spellman et al., “A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB,” BMC Bioinformatics, vol. 7, article 489, 2006. View at Publisher · View at Google Scholar · View at PubMed
  71. P. T. Spellman, M. Miller, J. Stewart et al., “Design and implementation of microarray gene expression markup language (MAGE-ML),” Genome Biology, vol. 3, no. 9, Article ID RESEARCH0046, 2002. View at Publisher · View at Google Scholar
  72. D. Field, G. Garrity, T. Gray et al., “The minimum information about a genome sequence (MIGS) specification,” Nature Biotechnology, vol. 26, no. 5, pp. 541–547, 2008. View at Publisher · View at Google Scholar · View at PubMed
  73. A. Brazma, P. Hingamp, J. Quackenbush et al., “Minimum information about a microarray experiment (MIAME)—toward standards for microarray data,” Nature Genetics, vol. 29, no. 4, pp. 365–371, 2001. View at Publisher · View at Google Scholar · View at PubMed
  74. C. F. Taylor, N. W. Paton, K. S. Lilley et al., “The minimum information about a proteomics experiment (MIAPE),” Nature Biotechnology, vol. 25, no. 8, pp. 887–893, 2007. View at Publisher · View at Google Scholar · View at PubMed
  75. R. J. Bino, R. D. Hall, O. Fiehn et al., “Potential of metabolomics as a functional genomics tool,” Trends in Plant Science, vol. 9, no. 9, pp. 418–425, 2004. View at Publisher · View at Google Scholar · View at PubMed
  76. A. R. Joyce and B. Ø. Palsson, “The model organism as a system: integrating ‘omics’ data sets,” Nature Reviews Molecular Cell Biology, vol. 7, no. 3, pp. 198–210, 2006. View at Publisher · View at Google Scholar · View at PubMed
  77. A. C. Fierro, F. Vandenbussche, K. Engelen, Y. Van de Peer, and K. Marchal, “Meta analysis of gene expression data within and across species,” Current Genomics, vol. 9, no. 8, pp. 525–534, 2008. View at Publisher · View at Google Scholar · View at PubMed
  78. Y. Lu, P. Huggins, and Z. Bar-Joseph, “Cross species analysis of microarray expression data,” Bioinformatics, vol. 25, no. 12, pp. 1476–1483, 2009. View at Publisher · View at Google Scholar · View at PubMed
  79. A. Savidor, R. S. Donahoo, O. Hurtado-Gonzales et al., “Cross-species global proteomics reveals conserved and unique processes in Phytophthora sojae and Phytophthora ramorum,” Molecular and Cellular Proteomics, vol. 7, no. 8, pp. 1501–1516, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. M. Huang, T. Chen, and Z. Chan, “An evaluation for cross-species proteomics research by publicly available expressed sequence tag database search using tandem mass spectral data,” Rapid Communications in Mass Spectrometry, vol. 20, no. 18, pp. 2635–2640, 2006. View at Publisher · View at Google Scholar · View at PubMed
  81. A. Ishii, R. Dutta, G. M. Wark et al., “Human myelin proteome and comparative analysis with mouse myelin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 14605–14610, 2009. View at Publisher · View at Google Scholar · View at PubMed
  82. M. Irmler, D. Hartl, T. Schmidt et al., “An approach to handling and interpretation of ambiguous data in transcriptome and proteome comparisons,” Proteomics, vol. 8, no. 6, pp. 1165–1169, 2008. View at Publisher · View at Google Scholar · View at PubMed
  83. A. Burgun and O. Bodenreider, “Accessing and integrating data and knowledge for biomedical research,” Yearbook of Medical Informatics, pp. 91–101, 2008. View at Google Scholar
  84. D. Hwang, A. G. Rust, S. Ramsey et al., “A data integration methodology for systems biology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17296–17301, 2005. View at Publisher · View at Google Scholar · View at PubMed
  85. J. P. Mathew, B. S. Taylor, G. D. Bader et al., “From bytes to bedside: data integration and computational biology for translational cancer research,” PLoS Computational Biology, vol. 3, no. 2, article e12, 2007. View at Publisher · View at Google Scholar · View at PubMed
  86. M. Lenzerini, “Data integration: a theoretical perspective,” in Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 233–246, 2002.
  87. J. Tsai, R. Sultana, Y. Lee et al., “RESOURCERER: a database for annotating and linking microarray resources within and across species,” Genome Biology, vol. 2, no. 11, Article ID SOFTWARE0002, pp. 1–4, 2001. View at Google Scholar
  88. K. J. Bussey, D. Kane, M. Sunshine et al., “MatchMiner: a tool for batch navigation among gene and gene product identifiers,” Genome Biology, vol. 4, no. 4, article R27, 2003. View at Publisher · View at Google Scholar
  89. A. Alibés, P. Yankilevich, A. Cañada, and R. Díaz-Uriarte, “IDconverter and IDClight: conversion and annotation of gene and protein IDs,” BMC Bioinformatics, vol. 8, article 9, 2007. View at Publisher · View at Google Scholar · View at PubMed
  90. H. Huang, Z. Z. Hu, C. N. Arighi, and C. H. Wu, “Integration of bioinformatics resources for functional analysis of gene expression and proteomic data,” Frontiers in Bioscience, vol. 12, pp. 5071–5088, 2007. View at Publisher · View at Google Scholar
  91. C. H. Wu, H. Huang, A. Nikolskaya, Z. Hu, and W. C. Barker, “The iProClass integrated database for protein functional analysis,” Computational Biology and Chemistry, vol. 28, no. 1, pp. 87–96, 2004. View at Publisher · View at Google Scholar
  92. H. Huang, W. C. Barker, Y. Chen, and C. H. Wu, “iProClass: an integrated database of protein family, function and structure information,” Nucleic Acids Research, vol. 31, no. 1, pp. 390–392, 2003. View at Publisher · View at Google Scholar
  93. T. J. P. Hubbard, B. L. Aken, S. Ayling et al., “Ensembl 2009,” Nucleic Acids Research, vol. 37, supplement 1, pp. D690–D697, 2009. View at Publisher · View at Google Scholar · View at PubMed
  94. J. A. Mitchell, A. R. Aronson, J. G. Mork, L. C. Folk, S. M. Humphrey, and J. M. Ward, “Gene indexing: characterization and analysis of NLM's GeneRIFs,” in Proceedings of the 27th AMIA Annual Symposium, pp. 460–464, Washington, DC, USA, 2003.
  95. A. N. Nikolskaya, C. N. Arighi, H. Huang, W. C. Barker, and C. H. Wu, “PIRSF family classification system for protein functional and evolutionary analysis,” Evolutionary Bioinformatics Online, vol. 2, pp. 197–209, 2007. View at Google Scholar
  96. H. Huang, A. N. Nikolskaya, C. R. Vinayaka, S. Chung, J. Zhang, and C. H. Wu, “Family classification and integrative associative analysis for protein functional annotation,” Trends in Bioinformatics Research, pp. 33–57, 2005. View at Google Scholar
  97. C. R. Vinayaka, C. H. Wu, and D. Natale, “Large-scale, classification-driven, rule-based functional annotation of proteins,” in Online Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics Part 4. Bioinformatics 4.3. Protein Function and Annotation, 2005. View at Google Scholar
  98. P. B. McGarvey, H. Huang, and R. Mazumder, “Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets,” PLoS ONE, vol. 4, no. 9, article e7162, 2009. View at Publisher · View at Google Scholar · View at PubMed
  99. B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, and C. H. Wu, “UniRef: comprehensive and non-redundant UniProt reference clusters,” Bioinformatics, vol. 23, no. 10, pp. 1282–1288, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. C. Zhang, O. Crasta, S. Cammer et al., “An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data,” Nucleic Acids Research, vol. 36, supplement 1, pp. D884–D891, 2008. View at Publisher · View at Google Scholar · View at PubMed
  101. H. Huang, H. D. Shukla, C. Wu, and S. Saxena, “Challenges and solutions in proteomics,” Current Genomics, vol. 8, no. 1, pp. 21–28, 2007. View at Publisher · View at Google Scholar
  102. W. Li, H. Amri, H. Huang, C. Wu, and V. Papadopoulos, “Gene and protein profiling of the response of MA-10 Leydig tumor cells to human chorionic gonadotropin,” Journal of Andrology, vol. 25, no. 6, pp. 900–913, 2004. View at Google Scholar
  103. A. Chi, J. C. Valencia, Z. Z. Hu et al., “A proteomics and bioinformatics approach to define the biogenesis and function of melanosomes,” Journal of Proteome Research, vol. 5, pp. 3135–3144, 2007. View at Google Scholar
  104. Z.-Z. Hu, J. C. Valencia, H. Huang et al., “Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes,” International Journal of Mass Spectrometry, vol. 259, no. 1–3, pp. 147–160, 2007. View at Publisher · View at Google Scholar · View at PubMed
  105. E. M. Zdobnov and R. Apweiler, “InterProScan—an integration platform for the signature-recognition methods in InterPro,” Bioinformatics, vol. 17, no. 9, pp. 847–848, 2001. View at Google Scholar
  106. L. Käll, A. Krogh, and E. L. Sonnhammer, “Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server,” Nucleic Acids Research, vol. 35, pp. W429–W432, 2007. View at Publisher · View at Google Scholar · View at PubMed
  107. P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software environment for integrated models of biomolecular interaction networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504, 2003. View at Publisher · View at Google Scholar · View at PubMed