Table of Contents Author Guidelines Submit a Manuscript
Advances in Bioinformatics
Volume 2012, Article ID 509126, 12 pages
http://dx.doi.org/10.1155/2012/509126
Research Article

BioEve Search: A Novel Framework to Facilitate Interactive Literature Search

1Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37232, USA
2Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85281, USA
3Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

Received 15 November 2011; Revised 7 March 2012; Accepted 28 March 2012

Academic Editor: Jin-Dong Kim

Copyright © 2012 Syed Toufeeq Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Pyysalo, A dependency parsing approach to biomedical text mining, Ph.D. thesis, 2008.
  2. D. Rebholz-Schuhmann, H. Kirsch, M. Arregui, S. Gaudan, M. Riethoven, and P. Stoehr, “EBIMed—text crunching to gather facts for proteins from Medline,” Bioinformatics, vol. 23, no. 2, pp. e237–e244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Plake, T. Schiemann, M. Pankalla, J. Hakenberg, and U. Leser, “ALIBABA: pubMed as a graph,” Bioinformatics, vol. 22, no. 19, pp. 2444–2445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Leser and J. Hakenberg, “What makes a gene name? Named entity recognition in the biomedical literature,” Briefings in Bioinformatics, vol. 6, no. 4, pp. 357–369, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Xu, J. W. Fan, G. Hripcsak, E. A. Mendonça, M. Markatou, and C. Friedman, “Gene symbol disambiguation using knowledge-based profiles,” Bioinformatics, vol. 23, no. 8, pp. 1015–1022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Hakenberg, C. Plake, R. Leaman, M. Schroeder, and G. Gonzalez, “Inter-species normalization of gene mentions with GNAT,” Bioinformatics, vol. 24, no. 16, pp. i126–i132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Oda, J. D. Kim, T. Ohta et al., “New challenges for text mining: mapping between text and manually curated pathways,” BMC Bioinformatics, vol. 9, supplement 3, article S5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. E. Califf and R. J. Mooney, “Relational learning of pattern-match rules for information extraction,” in Working Notes of AAAI Spring Symposium on Applying Machine Learning to Discourse Processing, pp. 6–11, AAAI Press, Menlo Park, Calif, USA, 1998.
  9. N. Kushmerick, D. S. Weld, and R. B. Doorenbos, “Wrapper induction for information extraction,” in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI '97), pp. 729–737, 1997.
  10. L. Schubert, “Can we derive general world knowledge from texts?” in Proceedings of the 2nd International Conference on Human Language Technology Research, pp. 94–97, Morgan Kaufmann, San Francisco, Calif, USA, 2002.
  11. M. Friedman and D. S. Weld, “Efficiently executing information-gathering plans,” in Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI '97), pp. 785–791, Nagoya, Japan, 1997.
  12. R. Bunescu, R. Ge, R. J. Kate et al., “Comparative experiments on learning information extractors for proteins and their interactions,” Artificial Intelligence in Medicine, vol. 33, no. 2, pp. 139–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Daelemans, S. Buchholz, and J. Veenstra, “Memory-based shallow parsing,” in Proceedings of the Conference on Natural Language Learning (CoNLL '99), vol. 99, pp. 53–60, 1999.
  14. E. Brill, “A simple rule-based part-of-speech tagger. In Proceedings of ANLP-92,” in Proceedings of the 3rd Conference on Applied Natural Language Processing, pp. 152–155, Trento, Italy, 1992.
  15. A. Mikheev and S. Finch, “A workbench for finding structure in texts,” in Proceedings of the Applied Natural Language Processing (ANLP '97), Washington, DC, USA, 1997.
  16. M. Craven and J. Kumlien, “Constructing biological knowledge bases by extracting information from text sources,” in Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology, pp. 77–86, AAAI Press, 1999.
  17. K. Seymore, A. McCallum, and R. Rosenfeld, “Learning hidden markov model structure for information extraction,” in Proceedings of the AAAI Workshop on Machine Learning for Information Extraction, 1999.
  18. L. Hunter, Z. Lu, J. Firby et al., “OpenDMAP: an open source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene expression,” BMC Bioinformatics, vol. 9, article 78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Ono, H. Hishigaki, A. Tanigami, and T. Takagi, “Automated extraction of information on protein-protein interactions from the biological literature,” Bioinformatics, vol. 17, no. 2, pp. 155–161, 2001. View at Google Scholar · View at Scopus
  20. C. Blaschke, M. A. Andrade, C. Ouzounis, and A. Valencia, “Automatic extraction of biological information from scientific text: protein-protein interactions,” AAAI, pp. 60–67.
  21. C. Friedman, P. Kra, H. Yu, M. Krauthammer, and A. Rzhetsky, “GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles,” Bioinformatics, vol. 17, no. 1, pp. S74–S82, 2001. View at Google Scholar · View at Scopus
  22. A. Rzhetsky, I. Iossifov, T. Koike et al., “GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data,” Journal of Biomedical Informatics, vol. 37, no. 1, pp. 43–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. P. A. Corney, B. F. Buxton, W. B. Langdon, and D. T. Jones, “BioRAT: extracting biological information from full-length papers,” Bioinformatics, vol. 20, no. 17, pp. 3206–3213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Leroy, H. Chen, and J. D. Martinez, “A shallow parser based on closed-class words to capture relations in biomedical text,” Journal of Biomedical Informatics, vol. 36, no. 3, pp. 145–158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Krallinger, F. Leitner, C. Rodriguez-Penagos, and A. Valencia, “Overview of the protein-protein interaction annotation extraction task of BioCreative II,” Genome Biology, vol. 9, no. 2, article S4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. D. Kim, T. Ohta, S. Pyysalo, Y. Kano, and J. Tsujii, “Overview of BioNLP'09 shared task on event extraction,” in Proceedings of the Workshop Companion Volume for Shared Task (BioNLP '09), pp. 1–9, Association for Computational Linguistics, Boulder, Colo, USA, 2009.
  27. A. Yakushiji, Y. Tateisi, Y. Miyao, and J. Tsujii, “Event extraction from biomedical papers using a full parser,” Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp. 408–419, 2001. View at Google Scholar · View at Scopus
  28. J. Ding, D. Berleant, J. Xu, and A. W. Fulmer, “Extracting Biochemical Interactions from MEDLINE Using a Link Grammar Parser,” in Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, pp. 467–471, November 2003. View at Scopus
  29. H. Cunningham, Information Extraction, Automatic, Encyclopedia of Language and Linguistics, 2nd edition, 2005.
  30. O. Etzioni, M. Cafarella, D. Downey et al., “Methods for domain-independent information extraction from the web: an experimental comparison,” in Proceedings of the 19th National Conference on Artificial Intelligence (AAAI '04), pp. 391–398, AAAI Press, Menlo Park, Calif, USA, July 2004. View at Scopus
  31. M. Cafarella, D. Downey, S. Soderland, and O. Etzioni, “KnowItNow: fast, scalable information extraction from the web,” in Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 563–570, Association for Computational Linguistics, Morristown, NJ, USA, 2005.
  32. O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open information extraction from the web,” Communications of the ACM, vol. 51, no. 12, pp. 68–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Cafarella and O. Etzioni, “A search engine for natural language applications,” in Proceedings of the International Conference on World Wide Web (WWW '05), pp. 442–452, ACM, New York, NY, USA, 2005.
  34. R. White, B. Kules, and S. Drucker, “Supporting exploratory search, introduction, special issue, communications of the ACM,” Communications of the ACM, vol. 49, no. 4, pp. 36–39, 2006. View at Google Scholar
  35. W. T. Fu, T. G. Kannampallil, and R. Kang, “Facilitating exploratory search by model-based navigational cues,” in Proceedings of the 14th ACM International Conference on Intelligent User Interfaces (IUI '10), pp. 199–208, ACM, New York, NY, USA, February 2010.
  36. J. Koren, Y. Zhang, and X. Liu, “Personalized interactive faceted search,” in Proceedings of the 17th International Conference on World Wide Web (WWW '08), pp. 477–485, ACM, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Sinha and D. R. Karger, “Magnet: supporting navigation in semistructured data environments,” in Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD '05), pp. 97–106, ACM, June 2005. View at Scopus
  38. M. Hearst, “Design recommendations for hierarchical faceted search interfaces,” in Proceedings of the ACM Workshop on Faceted Search (SIGIR '06), 2006.
  39. S. Stamou and L. Kozanidis, “Towards faceted search for named entity queries,” Advances in Web and Network Technologies, and Information Management, vol. 5731, pp. 100–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Tunkelang, Faceted Search, Morgan & Claypool, 2009.
  41. B. Settles, “ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text,” Bioinformatics, vol. 21, no. 14, pp. 3191–3192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Lafferty and F. Pereira, “Conditional random fields: probabilistic models for segmenting and labeling sequence data,” in Proceedings of the 18th International Conference on Machine Learning (ICML '01), 2001.
  43. A. Doms and M. Schroeder, “GoPubMed: exploring PubMed with the gene ontology,” Nucleic Acids Research, vol. 33, no. 2, pp. W783–W786, 2005. View at Publisher · View at Google Scholar · View at Scopus