Table of Contents Author Guidelines Submit a Manuscript
Advances in Bioinformatics
Volume 2012, Article ID 705435, 5 pages
http://dx.doi.org/10.1155/2012/705435
Research Article

In Silico Docking of HNF-1a Receptor Ligands

1Endocrine and Diabetes Centre, 15-12-15 Krishnanagar, Visakhapatnam 530 002, India
2Department of Computer Science and Engineering, GITAM University, Visakhapatnam 530045, India
3Department of Biochemistry and Bioinformatics, GITAM University, Visakhapatnam 530045, India
4Department of Computer Science, GITAM University, Visakhapatnam 530045, India

Received 21 July 2012; Revised 6 November 2012; Accepted 28 November 2012

Academic Editor: Ramana Davuluri

Copyright © 2012 Gumpeny Ramachandra Sridhar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Fajans, G. I. Bell, and K. S. Polonsky, “Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young,” The New England Journal of Medicine, vol. 345, no. 13, pp. 971–980, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Cereghini, “Liver-enriched transcription factors and hepatocyte differentiation,” The FASEB Journal, vol. 10, no. 2, pp. 267–282, 1996. View at Google Scholar · View at Scopus
  3. C. Haumaitre, M. Reber, and S. Cereghini, “Functions of HNF1 family members in differentiation of the visceral endoderm cell lineage,” Journal of Biological Chemistry, vol. 278, no. 42, pp. 40933–40942, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Yamagata, “Regulation of pancreatic β-cell function by the HNF transcription network: lessons from maturity-onset diabetes of the young (MODY),” Endocrine Journal, vol. 50, no. 5, pp. 491–499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. G. U. Ryffel, “Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences,” Journal of Molecular Endocrinology, vol. 27, no. 1, pp. 11–29, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. Duncan, M. A. Navas, D. Dufort, J. Rossant, and M. Stoffel, “Regulation of a transcription factor network required for differentiation and metabolism,” Science, vol. 281, no. 5377, pp. 692–695, 1998. View at Google Scholar · View at Scopus
  7. Z. Li, H. Wan, Y. Shi, and P. Ouyang, “Personal experience with four kinds of chemical structure drawing software: review on chemdraw, chemwindow, ISIS/draw, and chemsketch,” Journal of Chemical Information and Computer Sciences, vol. 44, no. 5, pp. 1886–1890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Chikhi and A. Bensegueni, “Docking efficiency comparison of Surflex, a commercial package and Arguslab, a licensable freeware,” Journal of Computer Science & Systems Biology, vol. 1, pp. 81–86, 2008. View at Google Scholar
  9. M. Yu, J. Wang, W. Li et al., “Proteomic screen defines the hepatocyte nuclear factor 1α-binding partners and identifies HMGB1 as a new cofactor of HNF1α,” Nucleic Acids Research, vol. 36, no. 4, pp. 1209–1219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Michan and D. Sinclair, “Sirtuins in mammals: insights into their biological function,” Biochemical Journal, vol. 404, no. 1, pp. 1–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. G. Wood, B. Rogina, S. Lavu et al., “Sirtuin activators mimic caloric restriction and delay ageing in metazoans,” Nature, vol. 430, no. 7000, pp. 686–689, 2004. View at Google Scholar · View at Scopus
  12. H. Yamamoto, K. Schoonjans, and J. Auwerx, “Sirtuin functions in health and disease,” Molecular Endocrinology, vol. 21, no. 8, pp. 1745–1755, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Wei, P. Fabrizio, F. Madia et al., “Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension,” PLoS Genetics, vol. 5, no. 5, Article ID e1000467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. M. Dioum, R. Chen, M. S. Alexander et al., “Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1,” Science, vol. 324, no. 5932, pp. 1289–1293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Luo, A. Y. Nikolaev, S. I. Imai et al., “Negative control of p53 by Sir2α promotes cell survival under stress,” Cell, vol. 107, no. 2, pp. 137–148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Brunet, L. B. Sweeney, J. F. Sturgill et al., “Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase,” Science, vol. 303, no. 5666, pp. 2011–2015, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. Motta, N. Divecha, M. Lemieux et al., “Mammalian SIRT1 represses forkhead transcription factors,” Cell, vol. 116, no. 4, pp. 551–563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. V. M. Nayagam, X. Wang, C. T. Yong et al., “SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents,” Journal of Biomolecular Screening, vol. 11, no. 8, pp. 959–967, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. C. Milne, P. D. Lambert, S. Schenk et al., “Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes,” Nature, vol. 450, no. 7170, pp. 712–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Sengottuvelan, K. Deeptha, and N. Nalini, “Resveratrol ameliorates DNA damage, prooxidant and antioxidant imbalance in 1,2-dimethylhydrazine induced rat colon carcinogenesis,” Chemico-Biological Interactions, vol. 181, no. 2, pp. 193–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. M. Erion, S. Yonemitsu, Y. Nie et al., “SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11288–11293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. M. Anderson, D. Shanmuganayagam, and R. Weindruch, “Caloric restriction and aging: studies in mice and monkeys,” Toxicologic Pathology, vol. 37, no. 1, pp. 47–51, 2009. View at Publisher · View at Google Scholar · View at Scopus