Advances in Botany The latest articles from Hindawi Publishing Corporation © 2016 , Hindawi Publishing Corporation . All rights reserved. Phenotypical Expression of Maize Seedlings from Lines with the “Tallos Gemelos” Trait Thu, 18 Jun 2015 11:50:18 +0000 In the Colegio de Postgraduados in Mexico, we have generated lines of maize (Zea mays L.) with the particularity that from a seed two or more stalks emerge and develop normally, calling that character “tallos gemelos.” This trait possibly modifies the proportions of the constituent tissues of the seed and could increase the nutritional and nutraceutical quality of the grain. The aim of this study was to evaluate the germination percentage and quantify and describe the types of phenotypic expression of seedling with twin stalks in the lines. 100 seeds of each of the 26 S5 lines tested were used. At 15 days after planting in a greenhouse, the seedlings were classified based on their morphology. The results showed that, on average, the lines had 81.3% of emergence and 51% of twin stalks. Eight types of phenotypic expression in seedlings were identified and described with the character “tallos gemelos”; Type II showed the highest proportion (59.5%). The phenotypical expressions identified in seedlings with the “tallos gemelos” trait are evidence of epigenetic mechanisms, since they present one of the features of epimutants, which is that they are reversible, that is; they can return to the original phenotype, in the present circumstance to normal plants (single stalk). Ma. Lorena Meraz-Fonseca, Ma. del Carmen Mendoza-Castillo, Takeo Ángel Kato-Yamakake, and Adriana Delgado-Alvarado Copyright © 2015 Ma. Lorena Meraz-Fonseca et al. All rights reserved. Rhizogenesis in Cell Suspension Culture from Mango Ginger: A Source of Isosorbide and n-Hexadecanoic Acid Thu, 05 Mar 2015 11:25:48 +0000 Curcuma amada Roxb. belongs to the monocotyledonous family Zingiberaceae. It is commonly known as mango ginger and used as a spice and valuable medicine. In this study, adventitious roots of C. amada have been successfully established from cell suspension culture. The highest percentage of adventitious root production was obtained from friable callus derived cell suspension culture. The culture conditions of adventitious root were optimized and the maximum adventitious root production was obtained in half strength MS liquid medium containing 0.3 mg L−1 IBA along with 3% of sucrose after 5 weeks of culture. Among the different initial inoculum density, the best culture condition for root growth occurred at 10 g FW of initial inoculum density. GC-MS analysis revealed that the in vitro raised adventitious roots containing two valuable bioactive compounds, isosorbide and n-hexadecanoic acid. The outcome of the present work will be helpful for the large scale cultivation of adventitious roots for the production of valuable bioactive compounds. Chellappan Soundar Raju, Kandhan Varutharaju, Chandrasekaran Thilip, Abubakker Aslam, and Appakan Shajahan Copyright © 2015 Chellappan Soundar Raju et al. All rights reserved. Contribution to the Macrophytic Typology of Belgian Reference Watercourses Thu, 19 Feb 2015 17:40:02 +0000 The objective of the study is to create a typology of macrophytes for the reference watercourses of the Meuse River catchment basin in Wallonia as a step towards the implementation of the European Water Framework Directive. The 50 sites studied are the object of a physicochemical and environmental characterization followed by a floristic survey (phanerogams, mosses, liverworts, and macroalgae). Six clusters of watercourses with their characteristic species are highlighted by two-way clustering and indicator species. The abundance of phanerogams in some watercourses of the Arden region is not only linked to light intensity but also depends on the degree of slope and the nature of the geological substrate. Daniel Galoux, Frédéric Chérot, Francis Rosillon, and Khadija Sossey-Alaoui Copyright © 2015 Daniel Galoux et al. All rights reserved. Shaping the Arabidopsis Transcriptome through Alternative Splicing Tue, 10 Feb 2015 13:01:54 +0000 Alternative splicing is a molecular tool of the cell to generate more than one messenger RNA from the same gene. Through variable combinations of exons blueprints for different proteins are assembled from one and the same pre-messenger RNA, thus increasing the complexity of the proteome. Moreover, through alternative splicing different transcript variants with different stabilities and different regulatory motifs can be generated, leading to variation in the transcriptome. The importance of alternative splicing in plants has been increasingly recognized in the last decade. Alternative splicing has been found during abiotic and biotic stress and during development. Here, recent advancements in the understanding of alternative splicing in higher plants are presented. Mechanistic details and functional consequences of alternative splicing are discussed with a focus on the model plant Arabidopsis thaliana. Dorothee Staiger Copyright © 2015 Dorothee Staiger. All rights reserved. Radiation Processed Carrageenan Improves Plant Growth, Physiological Activities, and Alkaloids Production in Catharanthus roseus L. Thu, 22 Jan 2015 09:17:05 +0000 Catharanthus roseus (L.) G. Don (Apocynaceae) is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. Commercially important antineoplastic alkaloids, namely, vinblastine and vincristine, are mainly present in the leaves of C. roseus. Gamma-rays irradiated carrageenan (ICR) has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ICR as a promoter of plant growth and alkaloids production in C. roseus, a pot experiment was carried out to explore the effect of ICR on the plant growth, physiological activities, and production of anticancer alkaloids in C. roseus at 120 and 150 days after planting (DAP). Foliar application of ICR (at 0, 20, 40, 60, 80, and 100 mg L−1) significantly improved the performance of C. roseus. 80 mg L−1 of ICR enhanced the leaf yield by 29.2 and 35.4% and the herbage yield by 32.5 and 37.4% at 120 and 150 DAP, respectively, over the control. The spray of ICR at 80 mg L−1 increased the yield of vinblastine by 64.3 and 65.0% and of vincristine by 75.5 and 77.0% at 120 and 150 DAP, respectively, as compared to the control. M. Naeem, Mohd. Idrees, Tariq Aftab, M. Masidur Alam, M. Masroor A. Khan, Moin Uddin, and Lalit Varshney Copyright © 2015 M. Naeem et al. All rights reserved. Energy Cane: Its Concept, Development, Characteristics, and Prospects Tue, 30 Sep 2014 09:11:19 +0000 Unlike conventional sugar cane (Saccharum spp.) energy cane is a cane selected to have more fiber than sucrose in its composition. This is obtained simply by altering the genetic contribution of the ancestral species of sugarcane using traditional breeding methods. The resulting key feature is a significant increase in biomass yield. This happens because accumulating sugar is not physiologically a simple process and results in penalty in the side of fiber and yield. This review paper describes the initial conception of fuel cane in Puerto Rico in the second half of 1970s, the present resurgence of interest in it, how to breed energy cane, and the main characteristics that make it one of the most favorable dedicated bioenergy crops. The present status of breeding for energy cane in the world is also reviewed. Its potential contribution to the renewable energy market is discussed briefly. Sizuo Matsuoka, Anthony J. Kennedy, Eder Gustavo D. dos Santos, André L. Tomazela, and Luis Claudio S. Rubio Copyright © 2014 Sizuo Matsuoka et al. All rights reserved. Arabinogalactan Glycosyltransferases: Enzyme Assay, Protein-Protein Interaction, Subcellular Localization, and Perspectives for Application Wed, 10 Sep 2014 10:55:08 +0000 Arabinogalactan proteins (AGPs) are abundant extracellular proteoglycans that are found in most plant species and involved in many cellular processes, such as cell proliferation and survival, pattern formation, and growth, and in plant microbe interaction. AGPs are synthesized by posttranslational O-glycosylation of proteins and attached glycan part often constitutes greater than 90% of the molecule. Subtle altered glycan structures during development have been considered to function as developmental markers on the cell surface, but little is known concerning the molecular mechanisms. My group has been working on glycosylation enzymes (glycosyltransferases) of AGPs to investigate glycan function of the molecule. This review summarizes the recent findings from my group as for AtGalT31A, AtGlcAT14A-C, and AtGalT29A of Arabidopsis thaliana with a specific focus on the (i) biochemical enzyme activities; (ii) subcellular compartments targeted by the glycosyltransferases; and (iii) protein-protein interactions. I also discuss application aspect of glycosyltransferase in improving AGP-based product used in industry, for example, gum arabic. Naomi Geshi Copyright © 2014 Naomi Geshi. All rights reserved. In Vitro Mass Multiplication and Assessment of Genetic Stability of In Vitro Raised Artemisia absinthium L. Plants Using ISSR and SSAP Molecular Markers Wed, 13 Aug 2014 08:08:37 +0000 The present investigations were made attempting to develop a rapid, reliable, and reproducible in vitro regeneration protocol for Artemisia absinthium L., a medicinal plant of Kashmir Himalayas. Out of several auxin-cytokinin combinations tested, Murashige and Skoog’s (MS) medium supplemented with 0.5 mgL−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mgL−1 kinetin (Kn) was found to be the best for the callus induction. On the other hand, 4.5 mgL−1 6-benzylaminopurine (BAP) and 0.5 mgL−1 1-α-naphthaleneacetic acid (NAA) in the medium resulted in maximum shoot induction from the callus. Similarly, BAP and NAA at a concentration of 1.5 mgL−1 and 0.5 mgL−1, respectively, proved to be the best for the multiple shoot induction from nodal explants. Numerous shoots were obtained from nodal explants after third subculture. In vitro rooting was maximum on medium containing indole-3-butyric acid (IBA) at 0.5 mgL−1. The genetic stability of the in vitro raised plants of Artemisia absinthium was assessed using the intersimple sequence repeat (ISSR) and sequence-specific amplification polymorphism (SSAP) molecular markers. Both markers were able to detect the somaclonal variations in the callus regenerated plants, while no variation was detected in the plants regenerated from the nodal explants. SSAP has been found to be more useful in detection of variability as compared to ISSR molecular marker. The results of present study concluded that the direct regeneration protocol will be useful for the production of true to type plants of this medicinally important plant. This will go a long way in reducing the pressure on the natural populations for the secondary metabolite production, especially for extraction of essential oils. B. Kour, G. Kour, S. Kaul, and M. K. Dhar Copyright © 2014 B. Kour et al. All rights reserved. Aflatoxin Resistance in Maize: What Have We Learned Lately? Mon, 04 Aug 2014 05:30:35 +0000 Aflatoxin contamination of maize grain is a huge economic and health problem, causing death and increased disease burden in much of the developing world and income loss in the developed world. Despite the gravity of the problem, deployable solutions are still being sought. In the past 15 years, much progress has been made in creating resistant maize inbred lines; mapping of genetic factors associated with resistance; and identifying possible resistance mechanisms. This review highlights this progress, most of which has occurred since the last time a review was published on this topic. Many of the needs highlighted in the last reviews have been addressed, and several solutions, taken together, can now greatly reduce the aflatoxin problem in maize grain. Continued research will soon lead to further solutions, which promise to further reduce and even eliminate the problem completely. Marilyn L. Warburton and W. Paul Williams Copyright © 2014 Marilyn L. Warburton and W. Paul Williams. All rights reserved. Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins Mon, 21 Jul 2014 09:43:50 +0000 Copper (Cu) is an essential micronutrient for all eukaryotes because it participates as a redox active cofactor in multiple biological processes, including mitochondrial respiration, photosynthesis, oxidative stress protection, and iron (Fe) transport. In eukaryotic cells, Cu transport toward the cytoplasm is mediated by the conserved CTR/COPT family of high-affinity Cu transport proteins. This outlook paper reviews the contribution of our research group to the characterization of the function played by the Arabidopsis thaliana COPT1–6 family of proteins in plant Cu homeostasis. Our studies indicate that the different tissue specificity, Cu-regulated expression, and subcellular localization dictate COPT-specialized contribution to plant Cu transport and distribution. By characterizing lack-of-function Arabidopsis mutant lines, we conclude that COPT1 mediates root Cu acquisition, COPT6 facilitates shoot Cu distribution, and COPT5 mobilizes Cu from storage organelles. Furthermore, our work with copt2 mutant and COPT-overexpressing plants has also uncovered Cu connections with Fe homeostasis and the circadian clock, respectively. Future studies on the interaction between COPT transporters and other components of the Cu homeostasis network will improve our knowledge of plant Cu acquisition, distribution, regulation, and utilization by Cu-proteins. Sergi Puig Copyright © 2014 Sergi Puig. All rights reserved. Towards Understanding Extracellular ROS Sensory and Signaling Systems in Plants Sun, 01 Jun 2014 08:11:37 +0000 Reactive Oxygen Species (ROS) are ubiquitous metabolites in all aerobic organisms. Traditionally ROS have been considered as harmful, accidental byproducts of cellular functions involving electron transport chains or electron transfer. However, it is now recognized that controlled production of ROS has significant signaling functions, for example, in pathogen defense, in the regulation of stomatal closure, or in cell-to-cell signaling. ROS formation in subcellular compartments is critical to act as “alarm” signal in the response to stress, and the concept of ROS as primarily signaling substances has emerged. The involvement of ROS in several developmental and inducible processes implies that there must be coordinated function of signaling network(s) that govern ROS responses and subsequent processes. The air pollutant ozone can be used as a useful tool to elucidate the function of apoplastic ROS: O3 degrades in cell wall into various ROS which are interpreted as ROS with signaling function inducing downstream responses. We have used ozone as a tool in mutant screens and transcript profiling-reverse genetics to identify genes involved in processes related to the signaling function of ROS. We review here our recent findings in the elucidation of apoplastic ROS sensing, signaling, and interaction with various symplastic components. Saijaliisa Kangasjärvi and Jaakko Kangasjärvi Copyright © 2014 Saijaliisa Kangasjärvi and Jaakko Kangasjärvi. All rights reserved. Plant Phenotypic Plasticity in Response to Environmental Factors Tue, 22 Apr 2014 11:28:46 +0000 Plants are exposed to heterogeneity in the environment where new stress factors (i.e., climate change, land use change, and invasiveness) are introduced, and where inter- and intraspecies differences may reflect resource limitation and/or environmental stress factors. Phenotypic plasticity is considered one of the major means by which plants can cope with environmental factor variability. Nevertheless, the extent to which phenotypic plasticity may facilitate survival under environmental condition changes still remains largely unknown because results are sometimes controversial. Thus, it is important to identify plant functional traits in which plasticity may play a determinant role in plant response to global change as well as on the ecological consequences at an ecosystem level for the competition between wild and invasive species, considering that species with a greater adaptive plasticity may be more likely to survive in novel environmental conditions. In the near future, it will be important to increase long-term studies on natural populations in order to understand plant response to environmental factor fluctuations including climate change. There is the necessity to analyze variations at phenotypic and genetic levels for the same species and, in particular, for endemic and rare species because these could have drastic effects at an ecosystem level. Loretta Gratani Copyright © 2014 Loretta Gratani. All rights reserved. Phytomelatonin: Discovery, Content, and Role in Plants Thu, 10 Apr 2014 00:00:00 +0000 Melatonin (N-acetyl-5-methoxytryptamine) is an indolic compound derived from tryptophan. Usually identified as a neurotransmitter or animal hormone, this compound was detected in plants in 1995. Interest in knowing the melatonin content of plants and its possible role therein is growing, as indicated by the increasing number of related publications. Melatonin is present in all plant species studied, with large variations in its level depending on the plant organ or tissue. It seems to be more abundant in aromatic plants and in leaves than in seeds. Regarding its physiological function in plants, melatonin shows auxin activity and is an excellent antioxidant, regulating the growth of roots, shoots, and explants, activating seed germination and rhizogenesis (lateral- and adventitious-roots), and delaying induced leaf senescence. Its ability to strengthen plants subjected to abiotic stress such as drought, cold, heat, salinity, chemical pollutants, herbicides, and UV radiation makes melatonin an interesting candidate for use as a natural biostimulating substance for treating field crops. Marino B. Arnao Copyright © 2014 Marino B. Arnao. All rights reserved.