Table of Contents Author Guidelines Submit a Manuscript
Advances in Chemistry
Volume 2014, Article ID 759594, 10 pages
http://dx.doi.org/10.1155/2014/759594
Research Article

Synthesis and Characterization of Novel Processable and Flexible Polyimides Containing 3,6-Di(4-carboxyphenyl)pyromellitic Dianhydride

1Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
2National Engineering and Scientific Commission, P.O. Box 2801, Islamabad, Pakistan

Received 28 June 2014; Revised 7 August 2014; Accepted 8 August 2014; Published 10 September 2014

Academic Editor: Alexandra Muñoz-Bonilla

Copyright © 2014 Muhammad Kaleem Khosa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. K. Ghosh and K. L. Mittal, Polyimides: Fundamentals and Applications, Marcel Dekker, New York, NY, USA, 1996.
  2. C. E. Sroog, “Polyimides,” Journal of Polymer Science Macromolecular Reviews, vol. 11, no. 1, pp. 161–208, 1976. View at Publisher · View at Google Scholar
  3. F. Li, S. Fang, J. J. Ge et al., “Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films,” Polymer, vol. 40, no. 16, pp. 4571–4583, 1999. View at Publisher · View at Google Scholar
  4. R. Rubner, “Photoreactive polymers for electronics,” Advanced Materials, vol. 2, pp. 452–457, 1990. View at Google Scholar
  5. T. Fukushima, Y. Kawakami, T. Oyama, and M. Tomoi, “Photosensitive polyetherimide (Ultem) based on reaction development patterning (RDP),” Journal of Photopolymer Science and Technology, vol. 15, no. 2, article 191, 2002. View at Publisher · View at Google Scholar
  6. T. Fukushima, T. Oyama, T. Iijima, M. Tomoi, and H. Itatani, “New concept of positive photosensitive polyimide: Reaction development patterning (RDP),” Journal of Polymer Science A: Polymer Chemistry, vol. 39, pp. 3451–3463, 2001. View at Google Scholar
  7. H. S. Li, J. G. Liu, J. M. Rui, L. Fan, and S. Y. Yang, “Synthesis and characterization of novel fluorinated aromatic polyimides derived from 1,1-bis(4-amino-3,5-dimethylphenyl)-1-(3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethane and various aromatic dianhydrides,” Journal of Polymer Science A: Polymer Chemistry, vol. 44, no. 8, pp. 2665–2674, 2006. View at Google Scholar
  8. C. P. Yang, Y. Y. Su, and F. Z. Hsiao, “Synthesis and properties of organosoluble polyimides based on 1,1-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]cyclohexane,” Polymer, vol. 45, no. 22, pp. 7529–7538, 2004. View at Google Scholar
  9. K. H. Choi, K. H. Lee, and J. G. C. Jung, “Synthesis of new poly(amide imide)s with (n-alkyloxy)phenyloxy side branches,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 39, no. 21, pp. 3818–3825, 2001. View at Publisher · View at Google Scholar
  10. J. C. Choia, H. S. Kima, B. H. Sohna, W. C. Zina, and M. Reea, “Synthesis and characterization of new alkali-soluble polyimides and preparation of alternating multilayer nano-films therefrom,” Polymer, vol. 45, no. 5, pp. 1517–1524, 2004. View at Publisher · View at Google Scholar
  11. T. Fukushima, K. Hosokawa, T. Oyama, T. Iijima, M. Tomoi, and H. Itatani, “Synthesis and positive-imaging photosensitivity of soluble polyimides having pendant carboxyl groups,” Journal of Polymer Science A: Polymer Chemistry, vol. 39, no. 6, pp. 934–946, 2001. View at Publisher · View at Google Scholar
  12. M. Ueda and T. A. Nakayama, “A new negative-type photosensitive polyimide based on poly(hydroxyimide), a cross-linker, and a photoacid generator,” Macromolecules, vol. 29, no. 20, pp. 6427–6431, 1996. View at Google Scholar
  13. D. J. Liaw, F. C. Chang, M. K. Leung, M. Y. Chou, and M. Klaus, “High thermal stability and rigid rod of novel organosoluble polyimides and polyamides based on bulky and noncoplanar naphthalene-biphenyldiamine,” Macromolecules, vol. 38, pp. 4024–4029, 2005. View at Publisher · View at Google Scholar
  14. B. Liu, W. Hu, T. Matsumoto, Z. Jiang, and S. J. Ando, “Synthesis and characterization of organosoluble ditrifluoromethylated aromatic polyimides,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 43, no. 14, pp. 3018–3029, 2005. View at Google Scholar
  15. S. Tamai, A. Yamaguchi, and M. Ohta, “Melt processible polyimides and their chemical structures,” Polymer, vol. 37, no. 16, pp. 3683–3692, 1996. View at Publisher · View at Google Scholar
  16. C.-P. Yang, S.-H. Hsiao, and M.-F. Hsu, “Organosoluble and light-colored fluorinated polyimides from 4,4′-bis(4-amino-2-trifluoromethylphenoxy)biphenyl and aromatic dianhydrides,” Journal of Polymer Science A: Polymer Chemistry, vol. 40, no. 4, pp. 524–534, 2002. View at Publisher · View at Google Scholar
  17. C. P. Yang, R. S. Chen, and K. H. Chen, “Effects of diamines and their fluorinated groups on the color lightness and preparation of organosoluble aromatic polyimides from 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]-hexafluoropropane,” Journal of Polymer Science A: Polymer Chemistry, vol. 41, no. 7, pp. 922–938, 2005. View at Publisher · View at Google Scholar
  18. T. M. Moy, C. D. Deporter, and J. E. McGrath, “Synthesis of soluble polyimides and functionalized imide oligomers via solution imidization of aromatic diester-diacids and aromatic diamines,” Polymer, vol. 34, no. 4, pp. 819–824, 1993. View at Publisher · View at Google Scholar
  19. J. Xu, C. He, and T. S. Chung, “Synthesis and characterization of soluble polyimides derived from [1,1′;4′,1"]terphenyl-2′,5′-diol and biphenyl-2,5-diol,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 39, no. 17, pp. 2998–3007, 2001. View at Google Scholar
  20. H. B. Zhang and Z. Y. Wang, “Polyimides derived from novel unsymmetric dianhydride,” Macromolecules, vol. 33, no. 12, pp. 4310–4312, 2000. View at Publisher · View at Google Scholar
  21. D. M. Hergenrother, K. A. Watson, J. G. Smith, J. W. Connel, and R. Yokota, “Polyimides from 2,3,3′,4′-biphenyltetracarboxylic dianhydride and aromatic diamines,” Polymer, vol. 43, no. 19, pp. 5077–5093, 2002. View at Publisher · View at Google Scholar
  22. X. Z. Fang, Q. X. Li, Z. Wang, Z. H. Yang, L. X. Gao, and M. X. J. Ding, “Synthesis and properties of novel polyimides derived from 2,2,3,3-benzophenonetetracarboxylic dianhydride,” Journal of Polymer Science A: Polymer Chemistry, vol. 42, pp. 2130–2144, 2004. View at Google Scholar
  23. S. H. Hsiao and K. H. J. Lin, “Polyimides derived from novel asymmetric ether diamine,” Journal of Polymer Science A: Polymer Chemistry, vol. 43, pp. 331–341, 2005. View at Publisher · View at Google Scholar
  24. Y. Shao, Y. F. Li, X. Zhao, X. L. Wang, T. Ma, and F. C. Yang, “Synthesis and properties of fluorinated polyimides from a new unsymmetrical diamine: 1,4-(2′-Trifluoromethyl-4′,4′-diaminodiphenoxy)benzene,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 44, no. 23, pp. 6836–6846, 2006. View at Publisher · View at Google Scholar
  25. D. S. Reddy, C. H. Chou, C. F. Shu, and G. H. Lee, “Synthesis and characterization of soluble poly(ether imide)s based on 2,2′-bis(4-aminophenoxy)-9,9′-spirobifluorene,” Polymer, vol. 44, no. 3, pp. 557–563, 2003. View at Google Scholar
  26. G. I. Rusu, A. Airinei, M. Rusu et al., “On the electronic transport mechanism in thin films of some new poly(azomethine sulfone)s,” Acta Materials, vol. 55, pp. 433–442, 2007. View at Publisher · View at Google Scholar
  27. A. Zabulica, E. Perju, M. Bruma, and L. Marin, “Novel luminescent liquid crystalline polyazomethines. Synthesis and study of thermotropic and photoluminescent propertie,” Liquid Crystal, vol. 41, no. 2, pp. 252–262, 2014. View at Publisher · View at Google Scholar
  28. L. Marin, V. Cozan, and M. Bruma, “Comparative study of new thermotropic polyazomethines,” Polymers for Advanced Technologies, vol. 17, pp. 664–672, 2006. View at Publisher · View at Google Scholar
  29. L. Marin, M. Dana, and D. Damaceanu, “New thermotropic liquid crystalline polyazomethines containing luminescent mesogens,” Soft Materials, vol. 7, pp. 1–20, 2009. View at Google Scholar
  30. C. H. Li and T. C. Chang, “Thermotropic liquid crystalline polymer. III. Synthesis and properties of poly(am ide-azomethine-ester),” Journal of Applied Polymer Science A: Polymer Chemistry, vol. 29, pp. 361–367, 1991. View at Google Scholar
  31. A. Atta, “Alternating current conductivity and dielectric properties of newly prepared poly(bis thiourea sulphoxide),” International Journal of Polymeric Materials, vol. 52, no. 5, pp. 361–372, 2003. View at Publisher · View at Google Scholar
  32. J. D. D'Cruz, T. K. Venkatachalam, and F. M. Uckun, “Novel thiourea compounds as dual-function microbicides,” Biology of Reproduction, vol. 63, no. 1, pp. 196–205, 2000. View at Google Scholar
  33. M. W. Sabaa, R. R. Mohamed, and A. A. Yassin, “Organic thermal stabilizers for rigid poly(vinyl chloride) VIII. Phenylurea and phenylthiourea derivatives,” Polymer Degradation and Stability, vol. 81, no. 1, pp. 37–45, 2003. View at Publisher · View at Google Scholar
  34. I. Dehri and M. Ozcan, “The effect of temperature on the corrosion of mild steel in acidic media in the presence of some sulphur-containing organic compounds,” Materials Chemistry and Physics, vol. 98, pp. 316–323, 2006. View at Publisher · View at Google Scholar
  35. M. Özcan, I. Dehri, and M. Erbil, “Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure,” Applied Surface Science, vol. 236, pp. 155–164, 2004. View at Google Scholar
  36. T. K. Venkatachalam, E. Sudbeck, and F. M. Uckun, “Structural influence on the solid state intermolecular hydrogen bonding of substituted thioureas,” Journal of Molecular Structure, vol. 751, no. 1–3, pp. 41–54, 2005. View at Publisher · View at Google Scholar
  37. D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, Drying of Solvents and Laboratory Chemicals. Purification of Laboratory Chemicals, Pergamon, 2nd edition, 1980.
  38. S. H. Hsio, C. P. Yang, and S. H. Chen, “Synthesis and properties of ortho-linked aromatic polyimides based on 1,2-bis(4-aminophenoxy)-4-tert-butylbenzene,” Journal of Polymer Science A: Polymer Chemistry, vol. 38, pp. 1551–1559, 2000. View at Google Scholar
  39. S. J. Zhang, Y. F. Li, X. L. Wang, D. X. Yin, Y. Shao, and X. Zhao, “Synthesis and characterization of novel polyimides based on pyridine-containing diamine,” Chinese Chemical Letters, vol. 16, no. 9, pp. 1165–1168, 2005. View at Google Scholar
  40. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, Harcourt Brace College, San Diego, Calif, USA, 1996.
  41. H. S. Hsiao, C. P. Yang, and C. L. Chung, “Synthesis and characterization of novel fluorinated polyimides based on 2,7-bis(4-amino-2-trifluoromethylphenoxy)naphthalene,” Journal of Polymer Science A: Polymer Chemistry, vol. 41, p. 2001, 2003. View at Google Scholar
  42. G. R. Srinivasa, S. N. Narendra Babu, C. Lakshmi, and D. C. Gowda, “Conventional and microwave assisted hydrogenolysis using zinc and ammonium formate,” Synthetic Communications, vol. 3, pp. 1831–1837, 2004. View at Google Scholar
  43. H. Behniafar and H. Ghorbani, “New heat stable and processable poly(amide–ether–imide)s derived from 5-(4-trimellitimidophenoxy)-1-trimellitimido naphthalene and various diamines,” Polymer Degradation and Stability, vol. 93, no. 3, pp. 608–617, 2008. View at Publisher · View at Google Scholar