Table of Contents Author Guidelines Submit a Manuscript
Advances in Chemistry
Volume 2014, Article ID 808456, 10 pages
http://dx.doi.org/10.1155/2014/808456
Research Article

Baphia nitida Leaves Extract as a Green Corrosion Inhibitor for the Corrosion of Mild Steel in Acidic Media

1Department of Chemistry, Faculty of Science, Imo State University, PMB 2000, Owerri, Nigeria
2Department of Chemistry, Federal University of Technology Owerri, PMB 1526, Owerri, Nigeria
3Department of Pure and Industrial Chemistry, University of Port Harcourt, PMB 5323, Port Harcourt, Nigeria

Received 21 April 2014; Accepted 10 July 2014; Published 4 August 2014

Academic Editor: Ana Mornar

Copyright © 2014 V. O. Njoku et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. S. Ferreira, C. Giacomelli, F. C. Giacomelli, and A. Spinelli, “Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel,” Materials Chemistry and Physics, vol. 83, no. 1, pp. 129–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Jones, Principles and Prevention of Corrosion, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 1996.
  3. M. G. Fontana, Corrosion Engineering, McGraw-Hill, Singapore, 3rd edition, 1986.
  4. A. Popova, M. Christov, and T. Deligeorgiev, “Influence of the molecular structure on the inhibitor properties of benzimidazole derivatives on mild steel corrosion in 1M hydrochloric acid,” Corrosion, vol. 59, no. 9, pp. 756–764, 2003. View at Google Scholar · View at Scopus
  5. E. E. Oguzie, C. K. Enenebeaku, C. O. Akalezi, S. C. Okoro, A. A. Ayuk, and E. N. Ejike, “Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media,” Journal of Colloid and Interface Science, vol. 349, no. 1, pp. 283–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. R. Hosein Zadeh, I. Danaee, and M. H. Maddahy, “Thermodynamic and adsorption behaviour of medicinal nitramine as a corrosion inhibitor for AISI steel alloy in HCl solution,” Journal of Materials Science and Technology, vol. 29, no. 9, pp. 884–892, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Lukovists, E. Kalman, and F. Zuchi, “Corrosion inhibitors-correlation between electronic structure and efficiency,” Corrosion, vol. 57, no. 1, pp. 3–8, 2001. View at Publisher · View at Google Scholar
  8. P. Mohan and G. P. Kalaignan, “1, 4-Bis (2-nitrobenzylidene) thiosemicarbazide as effective corrosion inhibitor for mild steel,” Journal of Materials Science & Technology, vol. 29, no. 11, pp. 1096–1100, 2013. View at Publisher · View at Google Scholar
  9. E. E. Oguzie, V. O. Njoku, C. K. Enenebeaku, C. O. Akalezi, and C. Obi, “Effect of hexamethylpararosaniline chloride (crystal violet) on mild steel corrosion in acidic media,” Corrosion Science, vol. 50, no. 12, pp. 3480–3486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. E. E. Oguzie, “Inhibition of acid corrosion of mild steel by Telfaria occidentalis,” Pigment and Resin Technology, vol. 34, no. 6, pp. 321–326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. N. O. Eddy, P. A. Ekwumemgbo, and P. A. P. Mamza, “Ethanol extract of Terminalia catappa as a green inhibitor for the corrosion of mild steel in H2SO4,” Green Chemistry Letters and Reviews, vol. 2, no. 4, pp. 223–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. E. S. H. El Ashry, A. El Nemr, S. A. Esawy, and S. Ragab, “Corrosion inhibitors. Part II: quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives,” Electrochimica Acta, vol. 51, no. 19, pp. 3957–3968, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Lebrini, F. Bentiss, H. Vezin, and M. Lagrenée, “The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadiazole: structure-activity correlation,” Corrosion Science, vol. 48, no. 5, pp. 1279–1291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. E. Manahan, Environmental Chemistry, CRC Press, Boca Raton, Fla, USA, 1999.
  15. E. E. Oguzie, “Studies on the inhibitive effect of Occimum viridis extract on the acid corrosion of mild steel,” Materials Chemistry and Physics, vol. 99, no. 2-3, pp. 441–446, 2006. View at Google Scholar
  16. O. K. Abiola, J. O. E. Otaigbe, and O. J. Kio, “Gossipium hirsutum L. extracts as green corrosion inhibitor for aluminum in NaOH solution,” Corrosion Science, vol. 51, no. 8, pp. 1879–1881, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. K. Satapathy, G. Gunasekaran, S. C. Sahoo, K. Amit, and P. V. Rodrigues, “Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution,” Corrosion Science, vol. 51, no. 12, pp. 2848–2856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. Sharma, A. Mudhoo, G. Jain, and J. Sharma, “Corrosion inhibition and adsorption properties of Azadirachta indica mature leaves extract as green inhibitor for mild steel in HNO3,” Green Chemistry Letters and Reviews, vol. 3, p. 7, 2010. View at Google Scholar
  19. E. I. Ating, S. A. Umoren, I. I. Udousoro, E. E. Ebenso, and A. P. Udoh, “Leaves extract of ananas sativum as green corrosion inhibitor for aluminium in hydrochloric acid solutions,” Green Chemistry Letters and Reviews, vol. 3, no. 2, pp. 61–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. D. Onwukaeme, “Anti-inflammatory activities of flavonoids of Baphia nitida Lodd. (Leguminosae) on mice and rats,” Journal of Ethnopharmacology, vol. 46, no. 2, pp. 121–124, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. A. I. Onuchukwu, “Corrosion inhibition of aluminum in alkaline medium. I: influence of hard bases,” Materials Chemistry and Physics, vol. 20, no. 4-5, pp. 323–332, 1988. View at Publisher · View at Google Scholar
  22. A. Popova, E. Sokolova, S. Raicheva, and M. Christov, “AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives,” Corrosion Science, vol. 45, no. 1, pp. 33–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Muller, “Corrosion inhibition of aluminium and zinc pigments by saccharides,” Corrosion Science, vol. 44, pp. 1583–1591, 2002. View at Publisher · View at Google Scholar
  24. A. Aytac, U. Ozmen, and M. Kabasakaloglu, “Investigation of some Schiff bases as acidic corrosion of alloy AA3102,” Materials Chemistry and Physics, vol. 89, no. 1, pp. 176–181, 2005. View at Publisher · View at Google Scholar
  25. E. E. Ebenso and E. E. Oguzie, “Corrosion inhibition of mild steel in acidic media by some organic dyes,” Materials Letters, vol. 59, no. 17, pp. 2163–2165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. N. Moussa, A. S. Fouda, A. I. Taha, and A. Elnenaa, “Some Thiosemicarbazide derivatives as corrosion inhibitors for aluminium in sodium hydroxide solution,” Bulletin of the Korean Chemical Society, vol. 9, no. 4, pp. 191–195, 1988. View at Google Scholar
  27. A. Y. El-Etre, “Inhibition of aluminum corrosion using Opuntia extract,” Corrosion Science, vol. 45, no. 11, pp. 2485–2495, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Abdallah, “Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution,” Corrosion Science, vol. 46, no. 8, pp. 1981–1996, 1981. View at Google Scholar
  29. E. E. Oguzie, Y. Li, and F. H. Wang, “Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon steel: synergistic effect of methionine and iodide ion,” Electrochimica Acta, vol. 52, no. 24, pp. 6988–6996, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. S. Morad, A. E. A. Hermas, and M. S. Abdel Aal, “Effect of amino acids containing sulfur on the corrosion of mild steel in phosphoric acid solutions polluted with Cl, F and Fe3+ ions–behaviour near and at the corrosion potential,” Journal of Chemical Technology and Biotechnology, vol. 77, pp. 486–494, 2002. View at Publisher · View at Google Scholar
  31. K. Orubite-Okorosaye and N. C. Oforka, “Corrosion inhibition of zinc on HCl using Nypa fruticans Wurmb extract and 1,5 diphenyl carbazone,” Journal of Applied Sciences & Environmental Management, vol. 8, pp. 56–61, 2004. View at Google Scholar
  32. S. Martinez and M. Matikos-Hukovic, “A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors,” Journal of Applied Electrochemistry, vol. 33, pp. 1137–1142, 2003. View at Google Scholar
  33. T. Zhao and G. Mu, “The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid,” Corrosion Science, vol. 41, no. 10, pp. 1937–1944, 1999. View at Publisher · View at Google Scholar
  34. M. Bouklah, B. Hammouti, M. Lagrenée, and F. Bentiss, “Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium,” Corrosion Science, vol. 48, no. 9, pp. 2831–2842, 2006. View at Publisher · View at Google Scholar
  35. W. Durnie, R. de Marco, A. Jefferson, and B. Kinsella, “Development of a structure-activity relationship for oil field corrosion inhibitors,” Journal of the Electrochemical Society, vol. 146, no. 5, pp. 1751–1756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Martinez and I. Stern, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system,” Applied Surface Science, vol. 199, no. 1–4, pp. 83–89, 2002. View at Publisher · View at Google Scholar
  37. G. Mu and X. Li, “Inhibition of cold rolled steel corrosion by Tween-20 in sulfuric acid: Weight loss, electrochemical and AFM approaches,” Journal of Colloid and Interface Science, vol. 289, pp. 184–192, 2005. View at Publisher · View at Google Scholar
  38. O. Olivares, N. V. Likhanova, B. Gómez et al., “Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment,” Applied Surface Science, vol. 252, no. 8, pp. 2894–2909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. A. I. Onuchukwu and S. P. Trasatti, “Hydrogen permeation into aluminium AA1060 as a result of corrosion in an alkaline medium. Influence of anions in solution and of temperature,” Corrosion Science, vol. 36, no. 11, pp. 1815–1817, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. E. E. Oguzie, G. N. Onuoha, and A. I. Onuchukwu, “Inhibitory mechanism of mild steel corrosion in 2 M sulphuric acid solution by methylene blue dye,” Materials Chemistry and Physics, vol. 89, no. 2-3, pp. 305–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. G. K. Gomma, “Corrosion of low-carbon steel in sulphuric acid solution in presence of pyrazole—halides mixture,” Materials Chemistry and Physics, vol. 55, no. 3, pp. 241–246, 1998. View at Publisher · View at Google Scholar
  42. E. E. Ebenso, “Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2-acetylphenothiazine,” Materials Chemistry and Physics, vol. 79, no. 1, pp. 58–70, 2003. View at Publisher · View at Google Scholar
  43. E. E. Oguzie, “Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel,” Corrosion Science, vol. 50, no. 11, pp. 2993–2998, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Aramaki and N. Hackermann, “Inhibition mechanism of medium-sized polymethyleneimine,” Journal of the Electrochemical Society, vol. 116, no. 5, pp. 568–574, 1969. View at Publisher · View at Google Scholar
  45. L. Tang, X. Li, G. Mu et al., “The synergistic inhibition between hexadecyl trimethyl ammonium bromide (HTAB) and NaBr for the corrosion of cold rolled steel in 0.5 M sulfuric acid,” Journal of Materials Science, vol. 41, pp. 3063–3069, 2006. View at Publisher · View at Google Scholar