Table of Contents
Advances in Chemistry
Volume 2014, Article ID 827514, 5 pages
http://dx.doi.org/10.1155/2014/827514
Research Article

The Inhibition Effect of Potassium Iodide on the Corrosion of Pure Iron in Sulphuric Acid

1Laboratory of Analytical Chemistry and Electrochemistry, Department of Chemistry, Faculty of Sciences, P.O. Box 119, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
2University Center of Naâma, BP 66, 45000 Naâma, Algeria

Received 29 June 2014; Accepted 8 September 2014; Published 24 September 2014

Academic Editor: Armando Zarrelli

Copyright © 2014 Tarik Attar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Eker and E. Yuksel, “Solutions to corrosion caused by agricultural chemicals,” Trakia Journal of Sciences, vol. 3, no. 7, pp. 1–6, 2005. View at Google Scholar
  2. N. Patni, S. Agarwal, and P. Shah, “Greener Approach towards Corrosion Inhibition,” Chinese Journal of Engineering, vol. 2013, Article ID 784186, 10 pages, 2013. View at Publisher · View at Google Scholar
  3. T. H. Ibrahim and M. A. Zour, “Corrosion inhibition of mild steel using fig leaves extract in hydrochloric acid solution,” International Journal of Electrochemical Science, vol. 6, no. 12, pp. 6442–6455, 2011. View at Google Scholar · View at Scopus
  4. E.-S. M. Sherif, “Electrochemical and gravimetric study on the corrosion and corrosion inhibition of pure copper in sodium chloride solutions by two azole derivatives,” International Journal of Electrochemical Science, vol. 7, no. 2, pp. 1482–1495, 2012. View at Google Scholar · View at Scopus
  5. P. Rajeev, A. O. Surendranathan, and C. S. N. Murthy, “Corrosion mitigation of the oil well steels using organic inhibitors—a review,” Journal of Materials and Environmental Science, vol. 3, no. 5, pp. 856–869, 2012. View at Google Scholar · View at Scopus
  6. E.-S. M. Sherif, “Corrosion and corrosion inhibition of pure iron in neutral chloride solutions by 1,1′-thiocarbonyldiimidazole,” International Journal of Electrochemical Science, vol. 6, no. 8, pp. 3077–3092, 2011. View at Google Scholar · View at Scopus
  7. H. Amar, A. Tounsi, A. Makayssi, A. Derja, J. Benzakour, and A. Outzourhit, “Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media,” Corrosion Science, vol. 49, no. 7, pp. 2936–2945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. E.-S. M. Sherif, R. M. Erasmus, and J. D. Comins, “In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions,” Electrochimica Acta, vol. 55, no. 11, pp. 3657–3663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. S. M. Sherif, “Corrosion and corrosion inhibition of pure iron in neutral chloride solutions by 1,1′-thiocarbonyldiimidazole,” International Journal of Electrochemical Science, vol. 6, pp. 3077–3092, 2011. View at Google Scholar
  10. R. T. Loto, C. A. Loto, and A. P. I. Popoola, “Corrosion inhibition of thiourea and thiadiazole derivatives: a review,” Journal of Materials and Environmental Science, vol. 3, no. 5, pp. 885–894, 2012. View at Google Scholar · View at Scopus
  11. T. Poornima, N. Jagannatha, and A. Nityananda Shetty, “Studies on corrosion of annealed and aged 18 Ni 250 grade maraging steel in sulphuric acid medium,” Portugaliae Electrochimica Acta, vol. 28, no. 3, pp. 173–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Kumar and A. N. Shetty, “Electrochemical investigation on the corrosion of 18%Ni M250 grade maraging steel under welded condition in sulfuric acid medium,” Surface Engineering and Applied Electrochemistry, vol. 49, no. 3, pp. 253–260, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Lukovits, E. Kálmán, and F. Zucchi, “Corrosion inhibitors—correlation between electronic structure and efficiency,” Corrosion, vol. 57, no. 1, pp. 3–8, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Quraishi and S. Khan, “Thiadiazoles-A potential class of heterocyclic inhibitors for prevention of mild steel corrosion in hydrochloric acid solution,” Indian Journal of Chemical Technology, vol. 12, no. 5, pp. 576–581, 2005. View at Google Scholar · View at Scopus
  15. E. A. Noor and A. H. Al-Moubaraki, “Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems,” Materials Chemistry and Physics, vol. 110, no. 1, pp. 145–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Larabi, O. Benali, and Y. Harek, “Corrosion inhibition of copper in 1 M HNO3 solution by N-phenyl oxalic dihydrazide and oxalic N-phenylhydrazide N-phenylthiosemicarbazide,” Portugaliae Electrochimica Acta, vol. 24, no. 3, pp. 337–346, 2006. View at Google Scholar
  17. L. Larabi, Y. Harek, M. Traisnel, and A. Mansri, “Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1M HCl,” Journal of Applied Electrochemistry, vol. 34, no. 8, pp. 833–839, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Ameer and A. M. Fekry, “Inhibition effect of newly synthesized heterocyclic organic molecules on corrosion of steel in alkaline medium containing chloride,” International Journal of Hydrogen Energy, vol. 35, no. 20, pp. 11387–11396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Benabdellah, A. Aouniti, A. Dafali et al., “Investigation of the inhibitive effect of triphenyltin 2-thiophene carboxylate on corrosion of steel in 2 M H3PO4 solutions,” Applied Surface Science, vol. 252, no. 23, pp. 8341–8347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Fekry and M. A. Ameer, “Corrosion inhibition of mild steel in acidic media using newly synthesized heterocyclic organic molecules,” International Journal of Hydrogen Energy, vol. 35, no. 14, pp. 7641–7651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Olivares, N. V. Likhanova, B. Gómez et al., “Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment,” Applied Surface Science, vol. 252, no. 8, pp. 2894–2909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Dabrowski, “Adsorption-from theory to practice,” Advances in Colloid and Interface Science, vol. 93, no. 1–3, pp. 135–224, 2001. View at Google Scholar
  23. T. Szauer and A. Brandt, “On the role of fatty acid in adsorption and corrosion inhibition of iron by amine-fatty acid salts in acidic solution,” Electrochimica Acta, vol. 26, no. 9, pp. 1257–1260, 1981. View at Publisher · View at Google Scholar · View at Scopus
  24. B. S. Prathibha, P. Kottees waram, and R. V. Bheema, “Study on the inhibition of mild steel corrosion by quaterwarey Ammonium compound in H2SO4medium,” Research Journal of Recent Sciences, vol. 2, no. 4, pp. 1–10, 2013. View at Google Scholar