Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2009, Article ID 152196, 13 pages
http://dx.doi.org/10.1155/2009/152196
Research Article

FE Models of GFRP and CFRP Strengthening of Reinforced Concrete Beams

1Water Business Group, CH2M-HILL, 1100 112th Avenue NE No. 400, Bellevue, WA 98004, USA
2Bridge Group, H.W. Lochner, Inc., 2001 Front St. NE No. 120, Salem, OR 97301, USA
3School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA
4Department of Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA 93407, USA

Received 19 March 2009; Accepted 27 July 2009

Academic Editor: Ayman Mosallam

Copyright © 2009 Kasidit Chansawat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. I. Kachlakev, “Strengthening bridges using composite materials,” FHWA Report OR-RD-98-08, FHWA, Corvallis, Ore, USA, 1998. View at Google Scholar
  2. J. W. Tedesco, J. M. Stallings, M. El-Mihilmy, and M. McCauley, “Rehabilitation of concrete bridges using FRP laminates,” in Proceedings of the 4th Conference on Materials for the New Millennium, K. Chong, Ed., ASCE, Washington, DC, USA, 1996.
  3. ACI 440, ACI, Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, ACI, Farmington Hills, Mich, USA, 2002.
  4. A. H. Nilson, “Nonlinear analysis of reinforced concrete by the finite element method,” ACI Materials Journal, vol. 65, no. 9, pp. 757–766, 1968. View at Google Scholar
  5. M. Suidan and W. C. Schnobrich, “Finite element analysis of reinforced concrete,” Journal of the Structural Division, vol. 99, no. 10, pp. 2109–2122, 1973. View at Google Scholar · View at Scopus
  6. A. M. Malek, H. Saadatmanesh, and M. R. Ehsani, “Prediction of failure load of R/C beams strengthened with FRP plate due to stress concentration at the plate end,” ACI Structural Journal, vol. 95, no. 2, pp. 142–152, 1998. View at Google Scholar · View at Scopus
  7. C. A. Ross, D. M. Jerome, J. W. Tedesco, and M. L. Hughes, “Strengthening of reinforced concrete beams with externally bonded composite laminates,” ACI Structural Journal, vol. 96, no. 2, pp. 212–220, 1999. View at Google Scholar · View at Scopus
  8. ANSYS Revision 5.7., Swanson Analysis System, Inc., Houston, Pa, USA, 2001.
  9. D. McCurry Jr., Strengthening of reinforced concrete beam using FRP composite fabrics: full-scale experimental studies and design concept verification, M.S. thesis, Oregon State University, Corvallis, Ore, USA, 2000.
  10. K. J. William and E. P. Warnke, “Constitutive model for the triaxial behavior of concrete,” in Proceedings of the International Association for Bridge and Structural Engineering, vol. 19, pp. 174–190, ISMES, Bergamo, Italy, 1975.
  11. P. T. Wang, S. P. Shah, and A. E. Naaman, “Stress-strain curves of normal and lightweight concrete in compression,” ACI Materials Journal, vol. 75, no. 11, pp. 603–611, 1978. View at Google Scholar · View at Scopus
  12. M. Y. H. Bangash, Concrete and Concrete Structures: Numerical Modeling and Applications, Elsevier Science, Essex, UK, 1989.
  13. D. C. Kent and R. Park, “Flexural members with confined concrete,” ASCE Journal of the Structural Division, vol. 97, no. 7, pp. 1969–1990, 1971. View at Google Scholar
  14. P. R. Barnard, “Researches into the complete stress-strain curve for concrete,” Magazine of Concrete Research, vol. 16, no. 49, pp. 203–210, 1964. View at Google Scholar
  15. S. Balakrishnan and D. W. Murray, “Concrete constitutive model for NLFE analysis of structures,” Journal of Structural Engineering, vol. 114, no. 7, pp. 1449–1466, 1988. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Desayi and S. Krishnan, “Equation for the stress-strain curve of concrete,” ACI Materials Journal, vol. 61, pp. 345–350, 1964. View at Google Scholar
  17. N. J. Stevens, S. M. Uzumeri, M. P. Collins, and G. T. Will, “Constitutive model for reinforced concrete finite element analysis,” ACI Structural Journal, vol. 88, no. 1, pp. 49–59, 1991. View at Google Scholar · View at Scopus
  18. A. R. Kemp, “The achievement of ductility in reinforced concrete beams,” Magazine of Concrete Research, vol. 50, no. 2, pp. 123–132, 1998. View at Google Scholar · View at Scopus
  19. M. Samaan, A. Mirmiran, and M. Shahawy, “Model of concrete confined by fiber composites,” Journal of Structural Engineering, vol. 124, no. 9, pp. 1025–1031, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. J. G. Teng, J. F. Chen, S. T. Smith, and L. Lam, FRP Strengthened RC Structures, John Wiley & Sons, West Sussex, UK, 2001.
  21. A. Mirmiran and M. Shahawy, “Behavior of concrete columns confined by fiber composites,” Journal of Structural Engineering, vol. 123, no. 5, pp. 583–590, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Bhatt and M. A. Kader, “Prediction of shear strength of reinforced concrete beams by nonlinear finite element analysis,” Computers and Structures, vol. 68, no. 1–3, pp. 139–155, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. ACI 318-02, American Concrete Institute, Building Code Requirements for Structural Concrete, ACI, Farmington Hills, Mich, USA, 2008.
  24. K. Chansawat, Nonlinear finite element analysis of reinforced concrete structures strengthened with FRP laminates, Ph.D. dissertation, Oregon State University, Corvallis, Ore, USA, 2003.
  25. J. Isenburg, Finite Element Analysis of Reinforced Concrete Structures II, ASCE, New York, NY, USA, 1993.
  26. American Society for Testing and Materials (ASTM) Subcommittee C09.70, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” Designation C 469-94, ASTM, West Conshohocken, Pa, USA, 1994.
  27. Z. P. Bazant, “Mechanics of fracture and progressive cracking in concrete structures,” in Fracture Mechanics of Concrete, G. C. Sih and A. D. Tommase, Eds., Martinus Nijhoff, Dordrecht, The Netherlands, 1984. View at Google Scholar