Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2010 (2010), Article ID 215295, 18 pages
http://dx.doi.org/10.1155/2010/215295
Research Article

Image-Based Framework for Concrete Surface Crack Monitoring and Quantification

Department of Structural Engineering, University of California, San Diego, CA 92093, USA

Received 5 September 2009; Revised 25 December 2009; Accepted 10 March 2010

Academic Editor: Jinying Zhu

Copyright © 2010 ZhiQiang Chen and Tara C. Hutchinson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. W. Doebling, C. R. Farrar, and M. B. Prime, “A summary review of vibration-based damage identification methods,” Shock and Vibration Digest, vol. 30, no. 2, pp. 91–105, 1998. View at Google Scholar · View at Scopus
  2. C. R. Farrar and K. Worden, “An introduction to structural health monitoring,” Philosophical Transactions of the Royal Society A, vol. 365, no. 1851, pp. 303–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Shull, Nondestructive Evaluation: Theory, Techniques, and Applications, CRC Press, Boca Raton, Fla, USA, 2002.
  4. I. Abdel-Qader, O. Abudayyeh, and M. E. Kelly, “Analysis of edge-detection techniques for crack identification in bridges,” Journal of Computing in Civil Engineering, vol. 17, no. 4, pp. 255–263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. T. C. Hutchinson and Z. Chen, “Improved image analysis for evaluating concrete damage,” Journal of Computing in Civil Engineering, vol. 20, no. 3, pp. 210–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. C. Hutchinson, F. Kuester, K.-U. Doerr, and D. Lim, “Optimal hardware and software design of an image-based system for capturing dynamic movements,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 1, pp. 164–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Zhang and G. Nagy, “Surface tortuosity and its application to analyzing cracks in concrete,” in Proceedings of the 17th International Conference on Pattern Recognition (ICPR '04), vol. 2, pp. 851–854, Cambridge, Mass, USA, August 2004. View at Scopus
  8. Z. Zhu and I. Brilakis, “Detecting air pockets for architectural concrete quality assessment using visual sensing,” Electronic Journal of Information Technology in Construction, vol. 13, pp. 86–102, 2008. View at Google Scholar · View at Scopus
  9. M. Moore, D. Rolander, B. Graybeal, B. Phares, and G. Washer, “Highway bridge inspection: state-of-the-practice survey,” Tech. Rep. FHWA-RD-01-033, Federal Highway Administration, McLean, Va, USA, 2001, http://www.tfhrc.gov/hnr20/nde/pdfs/01033.pdf. View at Google Scholar
  10. Y. Fujita, Y. Mitani, and Y. Hamamoto, “A method for crack detection on a concrete structure,” in Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06), vol. 3, pp. 901–904, Hong Kong, August 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ito, Y. Aoki, and S. Hashimoto, “Accurate extraction and measurement of fine cracks from concrete block surface image,” in Proceedings of the 28th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, pp. 2202–2207, Seville, Spain, November 2002. View at Scopus
  12. G. De Schutter, “Advanced monitoring of cracked structures using video microscope and automated image analysis,” NDT & E International, vol. 35, no. 4, pp. 209–212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Gonzalez and R. Woods, Digital Image Processing, Prentice-Hall, Upper Saddle River, NJ, USA, 2002.
  14. T. Lindeberg, “Edge detection and ridge detection with automatic scale selection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '96), pp. 465–470, San Francisco, Calif, USA, June 1996.
  15. S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 7, pp. 710–732, 1992. View at Google Scholar
  16. T. Soppe and T. Hutchinson, “Experimental damage-gas flow correlations for cyclically loaded reinforced concrete walls,” Tech. Rep. SSRP 09/07, Department of Structural Engineering, University of California, San Diego, Calif, USA, 2009. View at Google Scholar
  17. D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice-Hall, Upper Saddle River, NJ, USA, 2002.
  18. R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Transactions on Image Processing, vol. 14, no. 3, pp. 294–307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Chen, B. Chang, and T. C. Hutchinson, “Image-based monitoring of structural damage: concrete surface cracks,” in Smart Sensor Phenomena, Technology, Networks, and Systems, vol. 6933 of Proceedings of SPIE, San Diego, Calif, USA, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. ACI Committee 318, Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Mich, USA, 2008.
  21. B. Horn, Robot Vision, MIT Press, Cambridge, Mass, USA, 1996.
  22. P. W. Hallinan, “A low-dimensional representation of human faces for arbitrary lighting conditions,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '94), pp. 995–999, Seattle, Wash, USA, June 1994.
  23. P. Y. Simard, Y. A. Le Cun, J. S. Denker, and B. Victorri, “Transformation invariance in pattern recognition: tangent distance and propagation,” International Journal of Imaging Systems and Technology, vol. 11, no. 3, pp. 181–197, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Vasconcelos and A. Lippman, “A multiresolution manifold distance for invariant image similarity,” IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 127–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, 1997. View at Google Scholar · View at Scopus
  28. D. Mumford and J. Shah, “Optimal approximation by piecewise smooth functions and associated variational problems,” Communications in Pure and Applied Mathematics, vol. 42, no. 1, pp. 577–685, 1989. View at Google Scholar
  29. T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, NY, USA, 2002.
  31. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics, vol. 79, no. 1, pp. 12–49, 1988. View at Google Scholar · View at Scopus
  32. P. Soille, Morphological Image Analysis: Principles and Applications, Springer, New York, NY, USA, 1999.
  33. M. S. Hassouna and A. A. Farag, “Robust centerline extraction framework using level sets,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), vol. 1, pp. 458–467, San Diego, Calif, USA, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986. View at Google Scholar · View at Scopus
  35. Y. Yitzhaky and E. Peli, “A method for objective edge detection evaluation and detector parameter selection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 1027–1033, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. MathWorks, Inc, 2010, http://www.mathworks.com/.