Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2010 (2010), Article ID 291293, 13 pages
http://dx.doi.org/10.1155/2010/291293
Research Article

Ultrasonic Guided Waves-Based Monitoring of Rail Head: Laboratory and Field Tests

1Department of Civil and Environmental Engineering, University of Pittsburgh, 949 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
2Department of Structural and Geotechnical Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
3NDE and Structural Health Monitoring Laboratory, Department of Structural Engineering, University of California, San Diego 9500 Gilman Drive, M.C. 0085, La Jolla, CA 92093-0085, USA

Received 23 December 2009; Accepted 19 April 2010

Academic Editor: Jinying Zhu

Copyright © 2010 Piervincenzo Rizzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Federal Railroad Administration, “Safety statistics data: 1992–2002,” U.S. Department of Transportation, 2002.
  2. http://safetydata.fra.dot.gov/OfficeofSafety/.
  3. H. A. Toliyat, K. Abbaszadeh, M. M. Rahimian, and L. E. Olson, “Rail defect diagnosis using wavelet packet decomposition,” IEEE Transactions on Industry Applications, vol. 39, no. 5, pp. 1454–1461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Clark, “Rail flaw detection: overview and needs for future developments,” NDT and E International, vol. 37, no. 2, pp. 111–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Lanza di Scalea, “Ultrasonic testing in the railroad industry,” in Non-Destructive Testing Handbook, pp. 9–16, American Society for Nondestructive Testing, Columbus, Ohio, USA, 3rd edition, 2007. View at Google Scholar
  6. L. Oukhellou, P. Aknin, and J.-P. Perrin, “Dedicated sensor and classifier of rail head defects,” Control Engineering Practice, vol. 7, no. 1, pp. 57–61, 1999. View at Google Scholar · View at Scopus
  7. R. Pohl, A. Erhard, H.-J. Montag, H.-M. Thomas, and H. Wüstenberg, “NDT techniques for railroad wheel and gauge corner inspection,” NDT and E International, vol. 37, no. 2, pp. 89–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. J. Greene, J. R. Yates, and E. A. Patterson, “Crack detection in rail using infrared methods,” Optical Engineering, vol. 46, no. 5, Article ID 051013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Wilcox, M. Evans, B. Pavlakovic et al., “Guided wave testing of rail,” Insight, vol. 45, no. 6, pp. 413–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Cawley, M. J. S. Lowe, D. N. Alleyne, B. Pavlakovic, and P. Wilcox, “Practical long range guided wave testing: applications to pipes and rail,” Materials Evaluation, vol. 61, no. 1, pp. 66–74, 2003. View at Google Scholar · View at Scopus
  11. D. Hesse and P. Cawley, “Surface wave modes in rails,” Journal of the Acoustical Society of America, vol. 120, no. 2, pp. 733–740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Rose, M. J. Avioli, P. Mudge, and R. Sanderson, “Guided wave inspection potential of defects in rail,” NDT and E International, vol. 37, no. 2, pp. 153–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Rose, M. J. Avioli, and W.-J. Song, “Application and potential of guided wave rail inspection,” Insight, vol. 44, no. 6, pp. 353–358, 2002. View at Google Scholar · View at Scopus
  14. J. D. McNamara, F. Lanza di Scalea, and M. Fateh, “Automatic defect classification in long-range ultrasonic rail inspection using a support vector machine-based 'smart system',” Insight, vol. 46, no. 6, pp. 331–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Bartoli, F. Lanza di Scalea, M. Fateh, and E. Viola, “Modeling guided wave propagation with application to the long-range defect detection in railroad tracks,” NDT and E International, vol. 38, no. 5, pp. 325–334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Lanza di Scalea, I. Bartoli, P. Rizzo, and M. Fateh, “High-speed defect detection in rails by non-contact guided ultrasonic testing,” Journal of the Transportation Research Board, vol. 1961, pp. 66–77, 2006. View at Google Scholar
  17. G. Alers, “Railroad rail flaw detection system based on electromagnetic acoustic transducers,” Tech. Rep. DOT/FRA/ORD-88/09, U.S. Department of Transportation, 1988. View at Google Scholar
  18. R. S. Edwards, S. Dixon, and X. Jian, “Characterisation of defects in the railhead using ultrasonic surface waves,” NDT and E International, vol. 39, no. 6, pp. 468–475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Kenderian, D. Cerniglia, B. B. Djordjevic, G. Garcia, J. Sun, and M. Snell, “Rail track field testing using laser/air hybrid ultrasonic technique,” Materials Evaluation, vol. 61, no. 10, pp. 1129–1133, 2003. View at Google Scholar · View at Scopus
  20. T. Hayashi, W.-J. Song, and J. L. Rose, “Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example,” Ultrasonics, vol. 41, no. 3, pp. 175–183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. McNamara and F. L. di Scalea, “Improvements in noncontact ultrasonic testing of rails by the discrete wavelet transform,” Materials Evaluation, vol. 62, no. 3, pp. 365–372, 2004. View at Google Scholar · View at Scopus
  22. F. L. di Scalea, P. Rizzo, S. Coccia et al., “Non-contact ultrasonic inspection of rails and signal processing for automatic defect detection and classification,” Insight, vol. 47, no. 6, pp. 346–353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Staszewski, C. Boller, and G. Tomlinson, Health Monitoring of Aerospace Structures, John Wiley & Sons, Munich, Germany, 2006.
  24. P. Rizzo and F. Lanza di Scalea, “Wavelet-based unsupervised and supervised learning algorithms for ultrasonic structural monitoring of waveguides,” in Progress in Smart Materials and Structures Research, chapter 8, pp. 227–290, Nova Science, Hauppauge, NY, USA, 2007. View at Google Scholar
  25. P. Rizzo and F. L. di Scalea, “Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring,” Smart Structures and Systems, vol. 2, no. 3, pp. 253–274, 2007. View at Google Scholar · View at Scopus
  26. P. Rizzo and F. L. di Scalea, “Ultrasonic inspection of multi-wire steel strands with the aid of the wavelet transform,” Smart Materials and Structures, vol. 14, no. 4, pp. 685–695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Rizzo, I. Bartoli, M. Cammarata, and S. Coccia, “Digital signal processing for rail monitoring by means of ultrasonic guided waves,” Insight, vol. 49, no. 6, pp. 327–332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Rizzo, M. Cammarata, D. Dutta, H. Sohn, and K. A. Harries, “Unsupervised learning algorithm for fatigue crack detection in waveguides,” Smart Materials and Structures, vol. 18, Article ID 025016, 11 pages, 2009. View at Publisher · View at Google Scholar
  29. P. Rizzo, S. Coccia, I. Bartoli, and F. Lanza di Scalea, “On line high-speed rail defect detection–prototype assembling and field testing,” Tech. Rep. SSRP-06/17, University of California, San Diego, Calif, USA, 2006. View at Google Scholar
  30. S. Coccia, I. Bartoli, F. Lanza di Scalea, and P. Rizzo, “Non-contact rail defect detection: first and second field tests,” Tech. Rep. SSRP-07/15, University of California, San Diego, Calif, USA, 2007. View at Google Scholar
  31. S. Coccia, R. Phillips, I. Bartoli, S. Salamone, and F. Lanza di Scalea, “Non-contact rail defect detection,” Tech. Rep. SSRP-08/02, Federal Railroad Administration, University of California, San Diego, Calif, USA, 2008. View at Google Scholar
  32. S. Coccia, I. Bartoli, R. Phillips, S. Salamone, and F. Lanza di Scalea, “Non-contact rail defect detection: fourth field test,” Tech. Rep. SSRP-09/04, Federal Railroad Administration, University of California, San Diego, Calif, USA, 2009. View at Google Scholar