Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2010, Article ID 329084, 10 pages
http://dx.doi.org/10.1155/2010/329084
Research Article

Aging Influence on Fatigue Characteristics of RAC Mixtures Containing Warm Asphalt Additives

1Asphalt Rubber Technology Service, Department of Civil Engineering, Clemson University, Clemson, SC 29634-0911, USA
2Department of Civil Engineering, Clemson University, Clemson, SC 29634-0911, USA

Received 31 May 2009; Revised 14 January 2010; Accepted 9 February 2010

Academic Editor: Cumaraswamy Vipulanandan

Copyright © 2010 Feipeng Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S.-C. Huang, M. Tia, and B. E. Ruth, “Laboratory aging methods for simulation of field aging of asphalts,” Journal of Materials in Civil Engineering, vol. 8, no. 3, pp. 147–152, 1996. View at Google Scholar · View at Scopus
  2. M. Zeng and S.-C. Huang, “Characterizing the asphalt-aggregate mixtures using rheological properties of asphalt binders,” Journal of Testing and Evaluation, vol. 34, no. 6, pp. 471–476, 2006. View at Google Scholar · View at Scopus
  3. Strategic Highway Research Program, “Fatigue response of asphalt-aggregate mixes,” Tech. Rep., National Research Council, Washington, DC, USA, 1994. View at Google Scholar
  4. H. Di Benedetto, A. A. Soltani, and P. Chaverot, “Fatigue damage for bituminous mixtures: a pertinent approach,” Proceedings of Association of Asphalt Paving Technologists, vol. 65, pp. 142–158, 1996. View at Google Scholar
  5. J. S. Daniel and Y. R. Kim, “Laboratory evaluation of fatigue damage and healing of asphalt mixtures,” Journal of Materials in Civil Engineering, vol. 13, no. 6, pp. 434–440, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Anderson, Y. M. Le Hir, M. O. Marasteanu, J.-P. Planche, D. Martin, and G. Gauthier, “Evaluation of fatigue criteria for asphalt binders,” Transportation Research Record, no. 1766, pp. 48–56, 2001. View at Google Scholar · View at Scopus
  7. L. Wang, X. Wang, L. Mohammad, and Y. Wang, “Application of mixture theory in the evaluation of mechanical properties of asphalt concrete,” Journal of Materials in Civil Engineering, vol. 16, no. 2, pp. 167–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. You and W. G. Buttlar, “Discrete element modeling to predict the modulus of asphalt concrete mixtures,” Journal of Materials in Civil Engineering, vol. 16, no. 2, pp. 140–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Xiao, Development of fatigue predictive models of rubberized asphalt concrete (RAC) containing reclaimed asphalt pavement (RAP) mixtures, Ph.D. dissertation, Clemson University, Clemson, SC, USA, 2006.
  10. F. Xiao, S. N. Amirkhanian, J. Shen, and B. Putman, “Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures,” Construction and Building Materials, vol. 23, no. 2, pp. 1028–1034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Huang, G. Li, S.-S. Pang, and J. Eggers, “Investigation into waste tire rubber-filled concrete,” Journal of Materials in Civil Engineering, vol. 16, no. 3, pp. 187–194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Xiao, S. Amirkhanian, and C. H. Juang, “Rutting resistance of rubberized asphalt concrete pavements containing reclaimed asphalt pavement mixtures,” Journal of Materials in Civil Engineering, vol. 19, no. 6, pp. 475–483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Hurley and B. Prowell, “Evaluation of aspha-Min® for use in warm mix asphalt,” NCAT Report 05-04, Auburn, Auburn, Ala, USA, 2005. View at Google Scholar
  14. G. Hurley and B. Prowell, “Evaluation of sasobit® for use in warm mix asphalt,” NCAT Report 05-06, Auburn, Auburn, Ala, USA, 2005. View at Google Scholar
  15. T. Gandhi and S. Amirkhanian, “Laboratory investigation of warm asphalt binder properties—a preliminary investigation,” in Proceedings of the 5th International Conference on Maintenance and Rehabilitation of Pavements and Technological Control (MAIREPAV5 '07), vol. 5, pp. 475–480, Park City, Utah, USA, 2007.
  16. O. Kristjansdottir, S. T. Muench, L. Michael, and G. Burke, “Assessing potential for warm-mix asphalt technology adoption,” Transportation Research Record, no. 2040, pp. 91–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. M. Wasiuddin, S. Selvamohan, M. M. Zaman, and M. L. T. A. Guegan, “Comparative laboratory study of sasobit and aspha-min additives in warm-mix asphalt,” Transportation Research Record, no. 1998, pp. 82–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. B. D. Prowell, G. C. Hurley, and E. Crews, “Field performance of warm-mix asphalt at national center for asphalt technology test track,” Transportation Research Record, no. 1998, pp. 96–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. You, S. Wei, and B. Colbert, “Field and laboratory experience with warm-mix asphalt,” in Proceedings of the 88th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 2009.
  20. M. Tao and R. B. Mallick, “Evaluation of effects of warm-mix asphalt additives on properties of reclaimed asphalt pavement material,” in Proceedings of the 88th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 2009.
  21. A. Kvasnak and R. West, “Case study of warm-mix asphalt moisture susceptibility in Birmingham, Alabama,” in Proceedings of the 88th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 2009.
  22. C. K. Akisetty, Evaluation of warm asphalt additives on performance properties of CRM binders and mixtures, Ph.D. dissertation, Clemson University, Clemson, SC, USA, 2008.
  23. C. L. Monismith, J. A. Epps, and F. N. Finn, “Improved asphalt mix design,” Proceedings of Association of Asphalt Paving Technologists, vol. 54, pp. 347–406, 1985. View at Google Scholar
  24. R. G. Hicks, F. N. Finn, C. L. Monismith, and R. B. Leahy, “Validation of SHRP binder specification through mix testing,” Proceedings of Association of Asphalt Paving Technologists, vol. 62, pp. 565–614, 1993. View at Google Scholar
  25. A. A. Tayebali, B. Tsai, and C.L. Monismith, “Stiffness of asphalt aggregate mixes,” SHRP Report A-388, National Research Council, Washington, DC, USA, 1994. View at Google Scholar
  26. D. A. Williams, Microdamage healing in asphalt concretes: relating binder composition and surface energy to healing rate, Ph.D. thesis, Texas A&M University, College Station, Tex, USA, 1998.
  27. Y.-R. Kim, D. N. Little, and R. L. Lytton, “Fatigue and healing characterization of asphalt mixtures,” Journal of Materials in Civil Engineering, vol. 15, no. 1, pp. 75–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Hossain, S. Swartz, and E. Hoque, “Fracture and tensile characteristics of asphalt-rubber concrete,” Journal of Materials in Civil Engineering, vol. 11, no. 4, pp. 287–294, 1999. View at Google Scholar · View at Scopus
  29. H. Di Benedetto, C. De La Roche, H. Baaj, A. Pronk, and R. Lundström, “Fatigue of bituminous mixtures,” Materials and Structures, vol. 37, no. 267, pp. 202–216, 2004. View at Google Scholar · View at Scopus
  30. B. Birgisson, C. Soranakom, J. A. L. Napier, and R. Roque, “Microstructure and fracture in asphalt mixtures using a boundary element approach,” Journal of Materials in Civil Engineering, vol. 16, no. 2, pp. 116–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Shen and S. H. Carpenter, “Application of the dissipated energy concept in fatigue endurance limit testing,” Transportation Research Record, no. 1929, pp. 165–173, 2005. View at Google Scholar · View at Scopus