Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2013 (2013), Article ID 426932, 11 pages
http://dx.doi.org/10.1155/2013/426932
Research Article

Sensitivity Analysis of the Influence of Structural Parameters on Dynamic Behaviour of Highly Redundant Cable-Stayed Bridges

1Department of Civil & Structural Engineering, Faculty of Engineering & Built Environment, National University of Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
2Department of Civil & Structural Engineering, Faculty of Engineering & Built Environment, UTM University of Malaysia, 81310 Skudai, Johor, Malaysia

Received 14 February 2013; Accepted 10 April 2013

Academic Editor: John Mander

Copyright © 2013 B. Asgari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.