Table of Contents Author Guidelines Submit a Manuscript
Applied Computational Intelligence and Soft Computing
Volume 2009 (2009), Article ID 721370, 11 pages
http://dx.doi.org/10.1155/2009/721370
Research Article

Reorganizing Neural Network System for Two Spirals and Linear Low-Density Polyethylene Copolymer Problems

1Mathematics Department, Faculty of Science, Mansoura University, New Damietta, Egypt
2Physics Department, Faculty of Science, Benha University, Al Qalyubiyah, Egypt

Received 28 February 2009; Revised 24 October 2009; Accepted 12 November 2009

Academic Editor: Zhigang Zeng

Copyright © 2009 G. M. Behery et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Sreenivasa-Rao and B. Yegnanarayana, “Modeling durations of syllables using neural networks,” Computer Speech and Language, vol. 21, pp. 282–295, 2007. View at Publisher · View at Google Scholar
  2. H. Altun, A. Bilgil, and B. C. Fidan, “Treatment of multi-dimensional data to enhance neural network estimators in regression problems,” Expert Systems with Applications, vol. 32, no. 2, pp. 599–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. Á. Silva, P. Cortez, M. F. Santos, L. Gomes, and J. Neves, “Mortality assessment in intensive care units via adverse events using artificial neural networks,” Artificial Intelligence in Medicine, vol. 36, no. 3, pp. 223–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive evaluation,” Neural Computing & Applications, vol. 6, no. 3, pp. 148–157, 1997. View at Google Scholar · View at Scopus
  5. M. Y. El-Bakry, A. A. El-Harby, and G. M. Behery, “Automatic neural network system for vorticity of square cylinders with different corner radii,” Journal of Applied Mathematics and Informatics, vol. 26, no. 5-6, pp. 911–923, 2008. View at Google Scholar
  6. M. Y. El-Bakry and K. A. El-Metwally, “Neural network model for proton-proton collision at high energy,” Chaos, Solitons and Fractals, vol. 16, no. 2, pp. 279–285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Y. El-Bakry, “Feed forward neural networks modeling for K-P interactions,” Chaos, Solitons and Fractals, vol. 18, no. 5, pp. 995–1000, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A.-K. Hamid, “Scattering from a spherical shell with a circular aperture using a neural network approach,” Canadian Journal of Physics, vol. 76, no. 1, pp. 63–67, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Scalabrin, C. Corbetti, and G. Cristofoli, “A viscosity equation of state for R123 in the form of a multilayer feedforward neural network,” International Journal of Thermophysics, vol. 22, no. 5, pp. 1383–1395, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. Y.-C. Hu and J.-F. Tsai, “Backpropagation multi-layer perceptron for incomplete pairwise comparison matrices in analytic hierarchy process,” Applied Mathematics and Computation, vol. 180, no. 1, pp. 53–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Curry and P. H. Morgan, “Model selection in neural networks: some difficulties,” European Journal of Operational Research, vol. 170, no. 2, pp. 567–577, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Steil, “Online stability of backpropagation-decorrelation recurrent learning,” Neurocomputing, vol. 69, no. 7–9, pp. 642–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Riedmiller, “Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms,” Computer Standards & Interfaces, vol. 16, no. 3, pp. 265–278, 1994. View at Google Scholar · View at Scopus
  14. C. Igel and M. Hüsken, “Empirical evaluation of the improved Rprop learning algorithms,” Neurocomputing, vol. 50, pp. 105–123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. El-Harby, “Automatic classification system of fires and smokes from the Delta area in Egypt using neural networks,” International Journal of Intelligent Computing and Information Science, vol. 8, no. 1, pp. 59–68, 2008. View at Google Scholar
  16. Y. Al-Assaf and H. El Kadi, “Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks,” Composite Structures, vol. 77, no. 4, pp. 561–569, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Horváth, “Kernel CMAC: an efficient neural network for classification and regression,” Acta Polytechnica Hungarica, vol. 3, no. 1, pp. 5–20, 2006. View at Google Scholar
  18. Y. C. Liang, D. P. Feng, H. P. Lee, S. P. Lim, and K. H. Lee, “Successive approximation training algorithm for feedforward neural networks,” Neurocomputing, vol. 42, pp. 311–322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Quan and J. Yang, “Geodesic distance for support vector machines,” Acta Automatica Sinica, vol. 31, no. 2, pp. 202–208, 2005. View at Google Scholar · View at Scopus
  20. M. A. Couch and D. M. Binding, “High pressure capillary rheometry of polymeric fluids,” Polymer, vol. 41, no. 16, pp. 6323–6334, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. E. S. Carreras, N. El Kissi, J.-M. Piau, F. Toussaint, and S. Nigen, “Pressure effects on viscosity and flow stability of polyethylene melts during extrusion,” Rheologica Acta, vol. 45, no. 3, pp. 209–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Frasconi, M. Gori, and G. Soda, “Links between LVQ and backpropagation,” Pattern Recognition Letters, vol. 18, no. 4, pp. 303–310, 1997. View at Google Scholar · View at Scopus
  23. M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation learning: the RPROP algorithm,” in Proceedings of IEEE International Conference on Neural Networks (IJCNN '93), H. Ruspini, Ed., pp. 586–591, San Francisco, Calif, USA, April 1993. View at Scopus
  24. A. A. El-Harby, Automatic extraction of vector representations of line features from remotely sensed images, Ph.D. thesis, Keele University, Keele, UK, 2001.
  25. G. A. Papakostas, Y. Boutalis, and S. Samartzidis, “Two-stage hybrid tuning algorithm for training neural networks in image vision applications,” The International Journal of Signal and Imaging Systems Engineering, vol. 1, no. 1, pp. 58–67, 2008. View at Google Scholar
  26. D. Tian, Y. Liu, and J. Wang, “Fuzzy neural network structure identification based on soft competitive learning,” International Journal of Hybrid Intelligent Systems, vol. 4, no. 4, pp. 231–242, 2007. View at Google Scholar
  27. M. A. Potter and K. A. De Jong, “Cooperative coevolution: an architecture for evolving coadapted subcomponents,” Evolutionary Computation, vol. 8, no. 1, pp. 1–29, 2000. View at Google Scholar · View at Scopus
  28. K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan, Data Mining: A Knowledge Discovery Approach, Springer Science+Business Media, LLC, New York, NY, USA, 2007.
  29. J. Plaza, A. Plaza, R. Perez, and P. Martinez, “On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images,” Pattern Recognition, vol. 42, no. 11, pp. 3032–3045, 2009. View at Publisher · View at Google Scholar · View at Scopus