Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2010 (2010), Article ID 681070, 40 pages
Review Article

Competition of Superconductivity and Charge Density Waves in Cuprates: Recent Evidence and Interpretation

1Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauka Avenue, Kyiv 03680, Ukraine
2Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
3Institute of Physics, Al. Lotnik├│w 32/46, 02-668 Warsaw, Poland
4Department of Chemistry, University of Warsaw, Al. ┼╗wirki i Wigury 101, 02-089 Warsaw, Poland

Received 2 June 2009; Accepted 1 September 2009

Academic Editor: Sasha Alexandrov

Copyright © 2010 A. M. Gabovich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Explicit and implicit experimental evidence for charge density wave (CDW) presence in high- superconducting oxides is analyzed. The theory of CDW superconductors is presented. It is shown that the observed pseudogaps and dip-hump structures in tunnel and photoemission spectra are manifestations of the same CDW gapping of the quasiparticle density of states. Huge pseudogaps are transformed into modest dip-hump structures at low temperatures, , when the electron spectrum superconducting gapping dominates. Heat capacity jumps at the superconducting critical temperature and the paramagnetic limit are calculated for CDW superconductors. For a certain range of parameters, the CDW state in a -wave superconductor becomes reentrant with , the main control quantity being a portion of dielectrcally gapped Fermi surface. It is shown that in the weak-coupling approximation, the ratio between the superconducting gap at zero temperature and has the Bardeen-Cooper-Schrieffer value for -wave Cooper pairing and exceeds the corresponding value for -wave pairing of CDW superconductors. Thus, large experimentally found values are easily reproduced with reasonable input parameter values of the model. The conclusion is made that CDWs play a significant role in cuprate superconductivity.