Research Article | Open Access
A. A. J. Al-Douri, F. Y. Al-Shakily, M. F. A. Alias, A. A. Alnajjar, "Optical Properties of Al- and Sb-Doped CdTe Thin Films", Advances in Condensed Matter Physics, vol. 2010, Article ID 947684, 5 pages, 2010. https://doi.org/10.1155/2010/947684
Optical Properties of Al- and Sb-Doped CdTe Thin Films
Abstract
Nondoped and (Al, Sb)-doped CdTe thin films with 0.5, 1.5, and 2.5 โwt.%, respectively, were deposited by thermal evaporation technique under vacuum onto Corning 7059 glass at substrate temperatures () of room temperature (RT) and 423โK. The optical properties of deposited CdTe films such as band gap, refractive index (n), extinction coefficient (), and dielectric coefficients were investigated as function of Al and Sb wt.% doping, respectively. The results showed that films have direct optical transition. Increasing and the wt.% of both types of dopant, the band gap decrease but the optical is constant as n, and real and imaginary parts of the dielectric coefficient increase.
1. Introduction
Semiconductor materials like IIโVI have found their way in many applications such as photovoltaic and photoconductive devices [1, 2]. Heterojunctions (HJs) have attracted intensive research interest over the last four decades [3, 4] because of their potential importance in many technological applications. Cadmium telluride (CdTe) is unique among IIโVI compounds which makes it important and quite suitable for several applications as it may exhibit both n- and p-types conductivity. It is one of the few IIโVI compounds that are usually used as absorbers for photovoltaic devices [5]. It is band gap of 1.5โeV, just in the middle of the solar spectrum, and processes high absorption coefficient () (104โ) for the visible solar spectrum [6]. One of the advantages of this material is the possibility to vary its band gap with various dopant concentrations [7].
Considerable change in optical, electrical, and mechanical properties of CdTe thin films is produced by doping. Moreover p-type and n-type doping of CdTe is easy to achieve. The elements of the first and fifth columns of the periodic table act as acceptors, and those of the third and seventh columns act as donors. Mainly Al, Ga, In, I, and Cl have been used as donors, and Li, Cu, Ag, N, P, Sb, and As as acceptors. Some of these elements show special behavior in CdTe, depending on the site they occupy in the crystalline lattice [8โ15]. The maximum doping levels achievable in bulk CdTe are of around 1017โ for holes (As, P, and Li), and about 1018โ for electrons (Al, I, and In) [15].
The purpose of the present paper is to study the effect of substrate temperatures and doping percentages of Al and Sb on the optical properties of CdTe thin films. This study covered the optical energy gap, refractive index, extinction coefficient, and real and imaginary parts of dielectric constants for the prepared films.
2. Experimental Procedure
The films of CdTe are deposited by thermal evaporation technique under Torr vacuum pressure using the Edward E306A coating system. Different deposition conditions were introduced to prepare the films such as substrate temperatures () at RT and 423โK and dopant weight percentage (0.5, 1.5, and 2.5) of 5โN purity of Al for n-type and Sb for p-type thin film. A high purity (99.999%) of CdTe powder from Balzer was used as a source for undoped and doped CdTe thin films deposition using molybdenum boat. The films which thickness is about 0.5โm were grown on Corning glass substrate 7059 with a size of 1.0 2.5โcm2. The substrate was cleaned in a detergent, boiled in deionized water, and finally cleaned by using ultrasonic with isopropyl alcohol. After being dried, they were put at 20.0โcm distance from the evaporator source. The substrate temperature was measured and controlled using digital thermometer. The growth rate was controlled by keeping the sources temperature constant within 5% and the deposition rate was maintained as 0.0385โm/min. The thickness of the films was determined by optical interferometer method. The composition of the prepared films was determined using energy dispersive X-ray analysis (EDX) with the use of a Jeol JSM5600 equipment. The EDX scans results coincide with theoretical percentage values of CdTe, Al and, Sb in undoped and doped CdTe thin film [16].
Optical transmittance spectra of undoped and doped CdTe thin films with different wt.% of Al and Sb were carried out at RT using Perkin-Elmer Lambda800-UV-VIS spectrophotometer connected with Phillips computer. The absorption coefficient (), energy gap () and optical constants such as refractive index (n), extinction coefficient (), and the real and imaginary ( & ) parts of dielectric constants of thin films were calculated.
3. Results and Discussion
There is a wide agreement among the researchers that the optimum approach for the determination of the optical band gap of the compound semiconductor, such as CdTe thin films, is to calculate the absorption spectra of the samples through the measurement of their transmission intensity [17].
Figures 1(a) and 1(b) show the results of such optical transmission spectrum ( from 0.5 to 0.9โm) for the undoped and doped CdTe films with 2.5% Al and 2.5% Sb deposited on glass substrate at substrate temperature of RT and 423โK, respectively. The spectral behavior of these films shows that the absorption edges shift to higher wavelength (lower photon energy) for films deposited at RT and 423โK after doping with Al and Sb. This indicates that the doped films have lower band gap value compared to that for undoped films. Another noticeable remark is that the transmissions for films doped with 2.5% Sb were lower than those of undoped and 2.5% Al-doped films for both deposition substrate temperatures. Also it should be noted from Figures 1(a), 1(b) that the transmission near the band edge is higher for the undoped CdTe thin film deposited at 423โK than that deposited at RT. This behavior can be attributed to the improvement in perfection of the film quality [18], and this result is in agreement with the result reported by Basol [19].

(a)

(b)
From the transmittance data and according to Tauc relation [20], ()2 versus incident photon energy (E) plots were obtained, and the graphs are presented in the inset of Figures 1(a) and 1(b). All the plots have shown straight line regions where 104โ indicates that CdTe has a direct allowed band gap material. This behavior is in agreement with other researchers [21โ23], while Rasheed [24] had indicated that the transition in CdTe is indirect. Several authors have observed direct and indirect optical transitions in CdTe thin films [25, 26]. This controversy in published data for might be due to the variation in preparation techniques and deposition parameters.
The band gap energy () has been determined by intercepting the linear portion of the absorption curves to the photon energy axis for zero absorption coefficient (); the values of are listed in Table 1. These results showed that is depending on and doping concentration for both Al and Sb. Figure 2 illustrates the variation of with doping percentage concentrations of Al and Sb for CdTe thin films deposited at RT and 423โK. From Figure 2 and data in Table 1 it is show that the value of for undoped CdTe deposited at RT is higher than that deposited at 423โK. Similar behavior was reported by Saha et al. [25] for flash evaporated CdTe thin films. The decrease in with for undoped CdTe can be attributed to crystallinity improvement of films deposited at high substrate temperature. These in turn make a shift of the film band gap towards a bulk value of CdTe that is, 1.51โeV. Also it can be seen that upon doping with 0.5โwt.% Al, decreases from 1.57โeV to 1.54โeV at RT and from 1.54โeV to 1.52โeV at 423โK, whereas it decreases from 1.57โeV to 1.53โeV at RT and from 1.54โeV to 1.50โeV at 423โK for film doped with 0.5โwt % Sb. Upon increases the doping concentration to 2.5% Al results in a decrease in to 1.46โeV and 1.50โeV for CdTe deposited at RT and 423โK, respectively. Same trend behavior is observed for increasing the doping concentration to 2.5% Sb, that is, a decrease in to 1.44โeV and 1.47โeV for CdTe thin films deposited at RT and 423โK respectively. The decrease in with increasing the doping concentration is due to an increase of impurity states in the gap, which causing shifting Fermi level towards valence band energy (V.B) or conduction band energy (C.B) according to dopant type, and this contributes to make the deposited film possess a narrower value of optical energy gap [27]. A similar behavior has also been observed by Shehab [28] for CdTe doped with P and by Rusu [29] and Mohammed [30] for CdTe doped with Zn, while Nair et al. [31] have obtained a direct band gap of 1.42โeV for both undoped and Sb-doped electrodeposited CdTe thin films.
|

In general value elevated with increasing for films doped with percentage concentration more than 0.5% for both types as shown in Figure 2.
The extinction coefficient (), refractive index (n), and the real () and imaginary () parts of the dielectric constant for the prepared thin films have been estimated from reflectance () data at equal to 0.82โm using the following formula [32]: where .
The real and imaginary parts of the dielectric constant of the CdTe films were computed using the relation [33]
The outcomes of these calculations are presented in Table 1. These results show that the values of and are increased with increasing of and doping percentage concentration of Al and Sb except that they decreased with for undoped CdTe thin films. This behavior may be due to increase in absorption coefficient and it is in agreement with results shown by Saha et al. [25], while El-Shazly and El-Shair [34] showed that is almost constant and independent of the substrate temperature.
The value of n for undoped CdTe film deposited at 423โK is found to be greater than that deposited at RT as shown in Table 1. The variation of n with substrate temperature may be due to the variation of the crystallographic structure of the film with the substrate temperature [30]. This behavior is in agreement with those reported by Saha et al. [25] and El-Shazly and El-Shair [34]. Also, it, can be seen from Table 1 that n for Al- and Sb-doped CdTe thin films deposited at RT and 423โK is greater than that for the corresponding undoped films which is in agreement with Saha et al. [25] for In-doped CdTe films. The data tabulated in Table 1 also shows that the value of n is increased with increasing the concentration of both type of dopant Al and Sb, but the trend of increase in n for films doped with Sb is more than those doped with Al.
The variation of with and doping concentration of both types of dopant Al and Sb are the same as of n as shown in Table 1 because of the smaller value of compared with n2.
4. Conclusions
Pure CdTe thin films as well as CdTe films doped with various percentages of Al and Sb were grown on the glass substrate using thermal evaporation technique. Film composition and deposition parameters were investigated for their bearing of film optical properties.
The following make the summary of the study.(i)The films have allowed direct transition with optical energy gap lying within the range 1.44โ1.57โeV.(ii)Increasing in and dopant percentage concentrations for both Al and Sb caused a decrease in the optical band gap value.(iii)There is increase in the optical constants and n with increase in substrate temperature and doped percentage concentrations except for undoped CdTe thin film, where decreases with increasing , and the variation of and have similar trend as for n and , respectively.
References
- P. Capper, Ed., Narrow Gap II-VI Compounds for Optoelectronic and Electromagnetic Applications, Chapman & Hall, London, UK, 1st edition, 1997.
- N. Lovergine, P. Prete, L. Tapfer, F. Marzo, and M. Mancini, โHydrogen transport vapour growth and properties of thick CdTe epilayers for RT X-ray detector applications,โ Crystal Research and Technology, vol. 40, no. 10-11, pp. 1018โ1022, 2005. View at: Publisher Site | Google Scholar
- F. Yu, โStructure of the , , CdTe/GaAs heterojunctions,โ Journal of Crystal Growth, vol. 205, no. 3, pp. 264โ269, 1999. View at: Publisher Site | Google Scholar
- A. Luque and S. Hegedus, Eds., Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Sussex, UK, 2005.
- A. Morales-Acevedo, โThin film CdS/CdTe solar cells: research perspectives,โ Solar Energy, vol. 80, no. 6, pp. 675โ681, 2006. View at: Publisher Site | Google Scholar
- D. Lane, โA review of the optical band gap of thin film ,โ Solar Energy Materials and Solar Cells, vol. 90, no. 9, pp. 1169โ1175, 2006. View at: Publisher Site | Google Scholar
- H. Scheel and T. Fukuda, Crystal Growth Technology, John Wiley & Sons, Sussex, UK, 2003.
- A. L. Fahrenbruch, โOhmic contacts and doping of CdTe,โ Solar Cells, vol. 21, no. 1–4, pp. 399โ412, 1987. View at: Google Scholar
- Y. Y. Loginov, P. D. Brown, K. Durose et al., โTransmission electron microscopic studies of n- and p-type doped CdTe,โ Journal of Crystal Growth, vol. 117, no. 1–4, pp. 259โ265, 1992. View at: Google Scholar
- A. Alnajjar, S. Abdul Jawad, and N. Yusuf, โInvestigation of ohmic contact to P-type CdTe:p using ac and dc techniques,โ Renewable Energy, vol. 27, no. 3, pp. 417โ425, 2002. View at: Publisher Site | Google Scholar
- K. Yasuda, Y. Tomita, Y. Masuda et al., โGrowth condition of iodine-doped -CdTe layers in metal-organic vapor phase epitaxy,โ Journal of Electronic Materials, vol. 31, no. 7, pp. 785โ790, 2002. View at: Google Scholar
- H. Scheel and T. Fukuda, Crystal Growth Technology, John Wiley & Sons, New York, NY, USA, 2003.
- S. Shanmugan, S. Balaji, and D. Mutharasu, โSynthesis and characterization of 10% Sb doped CdTe thin films by stacked elemental layer (SEL) method,โ Materials Letters, vol. 63, no. 13-14, pp. 1189โ1191, 2009. View at: Publisher Site | Google Scholar
- C. M. Ruiz, O. Vigil, E. Saucedo, G. Contreras-Puente, and V. Bermúdez, โBi doped CdTe: increasing potentialities of CdTe based solar cells,โ Journal of Physics Condensed Matter, vol. 18, no. 31, pp. 7163โ7169, 2006. View at: Publisher Site | Google Scholar
- L. Jin, Y. Linyu, J. Jikang, Z. Hua, and S. Yanfei, โEffects of Sn-doping on morphology and optical properties of CdTe polycrystalline films,โ Journal of Semiconductors, vol. 20, no. 11, Article ID 112003, 4 pages, 2009. View at: Publisher Site | Google Scholar
- F. Al-Shakily, Characterization of CdTe/GaAs Heterojunction, Ph.D. thesis, College of Science, University of Baghdad, Baghdad, Iraq, 2009.
- S. Soundeswaran, O. S. Kumar, and R. Dhanasekaran, โEffect of ammonium sulphate on chemical bath deposition of CdS thin films,โ Materials Letters, vol. 58, no. 19, pp. 2381โ2385, 2004. View at: Publisher Site | Google Scholar
- A. Ashour, โPhysical properties of spray pyrolysed cds thin films,โ Turkish Journal of Physics, vol. 27, no. 6, pp. 551โ558, 2003. View at: Google Scholar
- B. M. Basol, โElectrodeposited CdTe and HgCdTe solar cells,โ Solar Cells, vol. 23, no. 1-2, pp. 69โ88, 1988. View at: Google Scholar
- J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York, NY, USA, 1974.
- I. Al-Asadi, The Study of the Relation of the Optical Constants of the CdTe Semiconductor with Thickness and Temperature Variations, M.S. thesis, College of Science, University of Baghdad, Baghdad, Iraq, 1998.
- L. R. Cruz and R. R. De Avillez, โFormation of CdTe thin films by the stacked elemental layer method,โ Thin Solid Films, vol. 373, no. 1-2, pp. 15โ18, 2000. View at: Publisher Site | Google Scholar
- A. U. Ubale, R. J. Dhokne, P. S. Chikhlikar, V. S. Sangawar, and D. K. Kulkarni, โCharacterization of nanocrystalline cadmium telluride thin films grown by successive ionic layer adsorption and reaction (SILAR) method,โ Bulletin of Materials Science, vol. 29, no. 2, pp. 165โ168, 2006. View at: Publisher Site | Google Scholar
- M Rasheed, Study of the Effect of Preparation and Thickness Parameters on the Electrical and Optical Properties of CdTe Compound, M.S. thesis, College of Science , University of Baghdad, Baghdad, Iraq, 1993.
- S. Saha, U. Pal, A. K. Chaudhuri, V. V. Rao, and H. D. Banerjee, โOptical properties of CdTe thin films,โ Physica Status Solidi A, vol. 114, no. 2, pp. 721โ729, 1989. View at: Google Scholar
- A. Abd El-Mongy, A. Belal, H. El Shaikh, and A. El Amin, โA comparison of the physical properties of CdTe single crystal and thin film,โ Journal of Physics D, vol. 30, no. 2, pp. 161โ165, 1997. View at: Google Scholar
- M. Alias, Optoelectronic Study of a-Si-Ge-Al (As): H Thin Films, Ph.D. thesis, College of Science, University of Baghdad, Baghdad, Iraq, 1998.
- A. Shehab, CdTe Solar Cells, M.S. thesis, College of Science, University of Baghdad, Baghdad, Iraq, 1985.
- G. Rusu, โStructural, electronic transport and optical properties of Zn-doped CdTe thin films,โ Journal of Optoelectronics and Advanced Materials, vol. 8, no. 3, pp. 931โ935, 2006. View at: Google Scholar
- H. Mohammed, Opto-Electronic Properties of CdTe:Zn Thin Films, M.S. thesis, College of Education -Ibn Al-Haithem, University of Baghdad, Baghdad, Iraq, 2008.
- J. Nair, R. Jayakrishnan, N. Chaure, and R. Pandey, โIn situ Sb-doped CdTe films,โ Semiconductor Science and Technology, vol. 13, no. 3, pp. 340โ344, 1998. View at: Publisher Site | Google Scholar
- A. Milnes and D. Feucht, Heterojunctions and Metal- Semiconductor Junctions, Academic Press, New York, NY, USA, 1972.
- L. Kazmerski, Polycrystalline and Amorphous Thin Films and Devices, Materials Science and Technology Series, Academic Press, New York, NY, USA, 1980.
- A. El-Shazly and H. El-Shair, โSome parameters affecting the optical constants of CdTe thin evaporated films,โ Thin Solid Films, vol. 78, no. 3, pp. 287โ293, 1989. View at: Google Scholar
Copyright
Copyright © 2010 A. A. J. Al-Douri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.