Advances in Condensed Matter Physics
Volume 2011 (2011), Article ID 727958, 22 pages
http://dx.doi.org/10.1155/2011/727958
Review Article
Experimental Progress towards Probing the Ground State of an Electron-Hole Bilayer by Low-Temperature Transport
1Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
2Department of Electronic and Electrical Engineering, University College, London WC1E7JE, UK
Received 27 May 2010; Accepted 27 October 2010
Academic Editor: Milica Milovanovic
Copyright © 2011 K. Das Gupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- Yu. E. Lozovik and V. I. Yudson, “A new mechanism for superconductivity: pairing between spatially separated electrons and holes,” Soviet Physics Journal of Experimental and Theoretical Physics, vol. 44, p. 389, 1976. View at Google Scholar
- Yu. E. Lozovik and V. I. Yudson, “Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism,” Journal of Experimental and Theoretical Physics Letters, vol. 22, p. 274, 1975. View at Google Scholar
- P. J. Price, “Hot electron effects in heterolayers,” Physica B+C, vol. 117-118, no. 2, pp. 750–752, 1983. View at Google Scholar · View at Scopus
- M. B. Pogrebinskii, “Mutual drag of carriers in a semiconductor-insulator-semiconductor system,” Soviet Physics: Semiconductors, vol. 11, no. 4, pp. 372–376, 1977. View at Google Scholar · View at Scopus
- A. P. Jauho and H. Smith, “Coulomb drag between parallel two-dimensional electron systems,” Physical Review B, vol. 47, no. 8, pp. 4420–4428, 1993. View at Publisher · View at Google Scholar · View at Scopus
- G. Vignale and A. H. MacDonald, “Drag in paired electron-hole layers,” Physical Review Letters, vol. 76, no. 15, pp. 2786–2789, 1996. View at Google Scholar · View at Scopus
- S. Conti, G. Vignale, and A. H. MacDonald, “Engineering superfluidity in electron-hole double layers,” Physical Review B, vol. 57, no. 12, pp. R6846–R6849, 1998. View at Google Scholar · View at Scopus
- B. Y. K. Hu, “Prospecting for the superfluid transition in electron-hole coupled quantum wells using Coulomb drag,” Physical Review Letters, vol. 85, no. 4, pp. 820–823, 2000. View at Publisher · View at Google Scholar · View at Scopus
- A. V. Balatsky, Y. N. Joglekar, and P. B. Littlewood, “Dipolar superfluidity in electron-hole bilayer systems,” Physical Review Letters, vol. 93, no. 26, Article ID 266801, 2004. View at Publisher · View at Google Scholar · View at Scopus
- Y. N. Joglekar, A. V. Balatsky, and M. P. Lilly, “Excitonic condensate and quasiparticle transport in electron-hole bilayer systems,” Physical Review B, vol. 72, no. 20, Article ID 205313, 6 pages, 2005. View at Publisher · View at Google Scholar
- P. B. Littlewood and X. Zhu, “Possibilities for exciton condensation in semiconductor quantum-well structures,” Physica Scripta, vol. T68, p. 56, 1996. View at Google Scholar
- J. Hubbard, “The description of collective motions in terms of many-body perturbation theory II. The correlation energy of a free electron gas,” Proceedings of the Royal Society of London A, vol. 243, p. 336, 1958. View at Google Scholar
- K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, “Electron correlations at metallic densities,” Physical Review, vol. 176, no. 2, pp. 589–599, 1968. View at Publisher · View at Google Scholar · View at Scopus
- K. S. Singwi and M. P. Tosi, “Correlations in electron liquids,” in Solid State Physics: Advances in Research and Applications, H. Ehrenreich, Ed., vol. 36, pp. 177–266, Academic Press, New York, NY, USA, 1981. View at Google Scholar
- L. Zheng and A. H. MacDonald, “Correlation in double-layer two-dimensional electron-gas systems: Singwi-Tosi-Land-Sjölander theory at B=0,” Physical Review B, vol. 49, no. 8, pp. 5522–5530, 1994. View at Publisher · View at Google Scholar · View at Scopus
- L. Świerkowski, J. Szymański, and Z. W. Gortel, “Coupled electron-hole transport: beyond the mean field approximation,” Physical Review Letters, vol. 74, no. 16, pp. 3245–3248, 1995. View at Publisher · View at Google Scholar · View at Scopus
- L. Liu, L. Świerkowski, D. Neilson, and J. Szymański, “Static and dynamic properties of coupled electron-electron and electron-hole layers,” Physical Review B, vol. 53, no. 12, pp. 7923–7931, 1996. View at Google Scholar · View at Scopus
- L. Liu, L. Świerkowski, and D. Neilson, “Exciton and charge density wave formation in spatially separated electron - Hole liquids,” Physica B, vol. 249–251, pp. 594–597, 1998. View at Google Scholar · View at Scopus
- U. Sivan, P. M. Solomon, and H. Shtrikman, “Coupled electron-hole transport,” Physical Review Letters, vol. 68, no. 8, pp. 1196–1199, 1992. View at Publisher · View at Google Scholar · View at Scopus
- B. E. Kane, J. P. Eisenstein, W. Wegscheider, L. N. Pfeiffer, and K. W. West, “Separately contacted electron-hole double layer in a heterostructure,” Applied Physics Letters, vol. 65, no. 25, pp. 3266–3268, 1994. View at Publisher · View at Google Scholar · View at Scopus
- H. Rubel, A. Fischer, W. Dietsche, K. von Klitzing, and K. Eberl, “Fabrication of indepedently contacted and tuneable 2D electron-hole systems in GaAs-AlGaAs double quantum wells,” Materials Science and Engineering B, vol. 51, p. 205, 1998. View at Google Scholar
- M. Pohlt, M. Lynass, J. G. S. Lok et al., “Closely spaced and separately contacted two-dimensional electron and hole gases by in situ focused-ion implantation,” Applied Physics Letters, vol. 80, no. 12, p. 2105, 2002. View at Publisher · View at Google Scholar · View at Scopus
- J. A. Keogh, K. Das Gupta, H. E. Beere, D. A. Ritchie, and M. Pepper, “Fabrication of closely spaced, independently contacted electron-hole bilayers in GaAs-AlGaAs heterostructures,” Applied Physics Letters, vol. 87, no. 20, Article ID 202104, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
- J. A. Seamons, D. R. Tibbetts, J. L. Reno, and M. P. Lilly, “Undoped electron-hole bilayers in a GaAs/AlGaAs double quantum well,” Applied Physics Letters, vol. 90, no. 5, Article ID 052103, 2007. View at Publisher · View at Google Scholar · View at Scopus
- J. P. Eisenstein, L. N. Pfieffer, and K. W. West, “Independently contacted 2-dimensional electron systems in double quantum wells,” Applied Physics Letters, vol. 57, p. 2324, 1990. View at Google Scholar
- A. F. Croxall, K. Das Gupta, C. A. Nicoll et al., “Patterned backgating using single-sided mask aligners: application to density-matched electron-hole bilayers,” Journal of Applied Physics, vol. 104, no. 11, Article ID 113715, 2008. View at Publisher · View at Google Scholar
- M. V. Weckwerth, J. A. Simmons, N. E. Harff et al., “Epoxy bond and stop-etch (EBASE) technique enabling backside processing of (AI)GaAs heterostructures,” Superlattices and Microstructures, vol. 20, no. 4, pp. 561–567, 1996. View at Publisher · View at Google Scholar
- N. P. R. Hill, J. T. Nicholls, E. H. Linfield et al., “Correlation effects on the coupled plasmon modes of a double quantum well,” Physical Review Letters, vol. 78, no. 11, pp. 2204–2207, 1997. View at Google Scholar
- M. Prunnila, S. J. Laakso, J. M. Kivioja, and J. Ahopelto, “Electrons and holes in Si quantum well: a room-temperature transport and drag resistance study,” Applied Physics Letters, vol. 93, no. 11, Article ID 112113, 2008. View at Publisher · View at Google Scholar
- K. Takashina, K. Nishiguchi, Y. Ono et al., “Electrons and holes in a 40 nm thick silicon slab at cryogenic temperatures,” Applied Physics Letters, vol. 94, no. 14, Article ID 142104, 2009. View at Publisher · View at Google Scholar · View at Scopus
- I. Farrer, A. F. Croxall, K. D. Gupta et al., “MBE growth and patterned backgating of electron-hole bilayer structures,” Journal of Crystal Growth, vol. 311, no. 7, pp. 1988–1993, 2009. View at Publisher · View at Google Scholar · View at Scopus
- J. P. Eisenstein and A. H. MacDonald, “Bose-Einstein condensation of excitons in bilayer electron systems,” Nature, vol. 432, no. 7018, pp. 691–694, 2004. View at Publisher · View at Google Scholar · View at PubMed
- M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “Vanishing hall resistance at high magnetic field in a double-layer two-dimensional electron system,” Physical Review Letters, vol. 93, no. 3, Article ID 036801, 2004. View at Publisher · View at Google Scholar
- L. Tiemann, J. G. S. Lok, W. Dietsche et al., “Exciton condensate at a total filling factor of one in Corbino two-dimensional electron bilayers,” Physical Review B, vol. 77, no. 3, Article ID 033306, 2008. View at Publisher · View at Google Scholar
- E. Tutuc, M. Shayegan, and D. A. Huse, “Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing,” Physical Review Letters, vol. 93, no. 3, Article ID 036802, 2004. View at Publisher · View at Google Scholar
- T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, “Mutual friction between parallel two-dimensional electron systems,” Physical Review Letters, vol. 66, no. 9, pp. 1216–1219, 1991. View at Publisher · View at Google Scholar
- M. C. Bønsager, K. Flensberg, B. Y. K. Hu, and A. H. MacDonald, “Frictional drag between quantum wells mediated by phonon exchange,” Physical Review B, vol. 57, no. 12, pp. 7085–7102, 1998. View at Google Scholar
- A. Yurtsever, V. Moldoveanu, and B. Tanatar, “Many-body effects in the Coulomb drag between low density electron layers,” Solid State Communications, vol. 125, no. 11-12, pp. 575–579, 2003. View at Publisher · View at Google Scholar
- R. Asgari, B. Tanatar, and B. Davoudi, “Comparative study of screened interlayer interactions in the Coulomb drag effect in bilayer electron systems,” Physical Review B, vol. 77, no. 11, Article ID 115301, 2008. View at Publisher · View at Google Scholar
- S. Das Sarma and E. H. Hwang, “In-plane magnetodrag in dilute bilayer two-dimensional systems: a Fermi-liquid theory,” Physical Review B, vol. 71, no. 19, Article ID 195322, 5 pages, 2005. View at Publisher · View at Google Scholar
- E. H. Hwang and S. Das Sarma, “Transport and drag in undoped electron-hole bilayers,” Physical Review B, vol. 78, no. 7, Article ID 075430, 2008. View at Publisher · View at Google Scholar
- F. Stern, “Polarizability of a two-dimensional electron gas,” Physical Review Letters, vol. 18, no. 14, pp. 546–548, 1967. View at Publisher · View at Google Scholar
- L. Świerkowski, J. Szymański, and Z. W. Gortel, “Linear-response theory for multicomponent fermion systems and its application to transresistance in two-layer semiconductor structures,” Physical Review B, vol. 55, no. 4, pp. 2280–2292, 1997. View at Google Scholar
- S. Das Sarma and A. Madhukar, “Collective modes of spatially separated, two-component, two-dimensional plasma in solids,” Physical Review B, vol. 23, no. 2, pp. 805–815, 1981. View at Publisher · View at Google Scholar
- B. Y. K. Hu and J. W. Wilkins, “Two-stream instabilities in solid-state plasmas caused by conventional and unconventional mechanisms,” Physical Review B, vol. 43, no. 17, pp. 14009–14029, 1991. View at Publisher · View at Google Scholar
- M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “Evidence for 2k electron-electron scattering processes in Coulomb drag,” Solid State Communications, vol. 123, no. 12, pp. 515–519, 2002. View at Publisher · View at Google Scholar
- E. H. Hwang, S. Das Sarma, V. Braude, and A. Stern, “Frictional drag in dilute bilayer 2D hole systems,” Physical Review Letters, vol. 90, no. 8, Article ID 086801, 4 pages, 2003. View at Google Scholar
- R. Pillarisetty, H. Noh, D. C. Tsui, E. P. De Poortere, E. Tutuc, and M. Shayegan, “Frictional drag between two dilute two-dimensional hole layers,” Physical Review Letters, vol. 89, no. 1, Article ID 016805, 2002. View at Google Scholar
- C. Hodges, H. Smith, and J. W. Wilkins, “Effect of fermi surface geometry on electron-electron scattering,” Physical Review B, vol. 4, no. 2, pp. 302–311, 1971. View at Publisher · View at Google Scholar
- L. Zheng and A. H. MacDonald, “Coulomb drag between disordered two-dimensional electron-gas layers,” Physical Review B, vol. 48, no. 11, pp. 8203–8209, 1993. View at Publisher · View at Google Scholar
- J. A. Seamons, C. P. Morath, J. L. Reno, and M. P. Lilly, “Coulomb drag in the exciton regime in electron-hole bilayers,” Physical Review Letters, vol. 102, no. 2, Article ID 026804, 2009. View at Publisher · View at Google Scholar
- C. P. Morath, J. A. Seamons, J. L. Reno, and M. P. Lilly, “Density imbalance effect on the Coulomb drag upturn in an undoped electron-hole bilayer,” Physical Review B, vol. 79, no. 4, Article ID 041305, 2009. View at Publisher · View at Google Scholar
- A. F. Croxall, K. Das Gupta, C. A. Nicoll et al., “Anomalous coulomb drag in electron-hole bilayers,” Physical Review Letters, vol. 101, no. 24, Article ID 246801, 2008. View at Publisher · View at Google Scholar
- H. B. G. Casimir, “On Onsager's principle of microscopic reversibility,” Reviews of Modern Physics, vol. 17, no. 2-3, pp. 343–350, 1945. View at Publisher · View at Google Scholar
- J. Szymański, L. Wierkowski, and D. Neilson, “Correlations in coupled layers of electrons and holes,” Physical Review B, vol. 50, no. 15, pp. 11002–11007, 1994. View at Publisher · View at Google Scholar · View at Scopus
- M. J. Kellogg, Evidence for excitonic superfluidity in a two dimensional electron system, Ph.D. thesis, California Institute of Technology, 2005.
- C. P. Morath, J. A. Seamons, J. L. Reno, and M. P. Lilly, “Layer interdependence of transport in an undoped electron-hole bilayer,” Physical Review B, vol. 78, no. 11, Article ID 115318, 2008. View at Publisher · View at Google Scholar · View at Scopus
- A. Levchenko and A. Kamenev, “Coulomb drag at zero temperature,” Physical Review Letters, vol. 100, no. 2, Article ID 026805, 2008. View at Publisher · View at Google Scholar · View at Scopus
- M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “Coulomb drag in the extreme quantum limit,” Physical Review Letters, vol. 80, no. 8, pp. 1714–1717, 1998. View at Google Scholar · View at Scopus
- X. G. Feng, S. Zelakiewicz, H. Noh et al., “Negative electron drag and holelike behavior in the integer quantum hall regime,” Physical Review Letters, vol. 81, no. 15, pp. 3219–3222, 1998. View at Google Scholar · View at Scopus
- N. P. R. Hill, J. T. Nicholls, E. H. Linfield et al., “Electron-electron scattering between closely spaced two-dimensional electron gases,” Physica B, vol. 249–251, pp. 868–872, 1998. View at Google Scholar · View at Scopus
- J. G. S. Lok, S. Kraus, M. Pohlt et al., “Spin effects in the magnetodrag between double quantum wells,” Physical Review B, vol. 63, no. 4, Article ID 041305, 4 pages, 2001. View at Google Scholar
- K. Muraki, J. G. S. Lok, S. Kraus et al., “Coulomb drag as a probe of the nature of compressible states in a magnetic field,” Physical Review Letters, vol. 92, no. 24, Article ID 246801, 2004. View at Publisher · View at Google Scholar · View at Scopus
- A. Alkauskas, K. Flensberg, B. Y. K. Hu, and A. P. Jauho, “Sign reversal of drag in bilayer systems with in-plane periodic potential modulation,” Physical Review B, vol. 66, no. 20, Article ID 201304, 2002. View at Google Scholar · View at Scopus
- S. De Palo, F. Rapisarda, and G. Senatore, “Excitonic condensation in a symmetric electron-hole bilayer,” Physical Review Letters, vol. 88, no. 20, Article ID 206401, 4 pages, 2002. View at Google Scholar · View at Scopus
- L. Onsager, “Reciprocal relations in irreversible processes. I,” Physical Review, vol. 37, no. 4, pp. 405–426, 1931. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
- L. Onsager, “Reciprocal relations in irreversible processes. II,” Physical Review, vol. 38, no. 12, pp. 2265–2279, 1931. View at Publisher · View at Google Scholar · View at Scopus
- A. P. Mills Jr., A. P. Ramirez, L. N. Pfeiffer, and K. W. West, “Nonmonotonic temperature-dependent resistance in low density 2D hole gases,” Physical Review Letters, vol. 83, no. 14, pp. 2805–2808, 1999. View at Google Scholar
- S. Das Sarma and E. H. Hwang, “Calculated temperature-dependent resistance in low-density two-dimensional hole gases in GaAs heterostructures,” Physical Review B, vol. 61, no. 12, pp. R7838–R7841, 2000. View at Google Scholar
- A. F. Croxall, K. Das Gupta, C. A. Nicoll et al., “Possible effect of collective modes in zero magnetic field transport in an electron-hole bilayer,” Physical Review B, vol. 80, no. 12, Article ID 125323, 2009. View at Publisher · View at Google Scholar · View at Scopus
- A. F. Croxall, K. Das Gupta, C. A. Nicoll et al., “Towards the ground state of an electron-hole bilayer,” Physica E, vol. 42, no. 4, pp. 1247–1250, 2010. View at Publisher · View at Google Scholar · View at Scopus
- J. Huang, D. S. Novikov, D. C. Tsui, L. N. Pfieffer, and K. W. West, “Interaction effects in the transport of two dimensional holes in GaAs,” http://arxiv.org/abs/cond-mat/0610320.
- L. H. Ho, W. R. Clarke, A. P. Micolich et al., “Effect of screening long-range Coulomb interactions on the metallic behavior in two-dimensional hole systems,” Physical Review B, vol. 77, no. 20, Article ID 201402, 2008. View at Publisher · View at Google Scholar
- L. Świerkowski, J. Szymański, and Z. W. Gortel, “Intrinsic limits on carrier mobilities in double-layer systems,” Journal of Physics Condensed Matter, vol. 8, no. 18, pp. L295–L300, 1996. View at Google Scholar
- G. Bergman, “Weak Localisation in thin films: a time of flight experiment with conduction electrons,” Physics Reports, vol. 107, no. 1, pp. 1–58, 1984. View at Google Scholar
- R. K. Moudgil, G. Senatore, and L. K. Saini, “Dynamic correlations in symmetric electron-electron and electron-hole bilayers,” Physical Review B, vol. 66, no. 20, Article ID 205316, 10 pages, 2002. View at Google Scholar
- R. K. Moudgil, “Coupled electron-hole quantum well structure: mass asymmetry and finite width effects,” Journal of Physics Condensed Matter, vol. 18, no. 4, pp. 1285–1301, 2006. View at Publisher · View at Google Scholar
- P. Ludwig, A. Filinov, YU. E. Lozovik, H. Stolz, and M. Bonitz, “Crystallization in mass-asymmetric electron-hole bilayers,” Contributions to Plasma Physics, vol. 47, no. 4-5, pp. 335–344, 2007. View at Publisher · View at Google Scholar
- B. Tanatar and D. M. Ceperley, “Ground state of the two-dimensional electron gas,” Physical Review B, vol. 39, no. 8, pp. 5005–5016, 1989. View at Publisher · View at Google Scholar
- J. Huang, D. S. Novikov, D. C. Tsui, L. N. Pfeiffer, and K. W. West, “Nonactivated transport of strongly interacting two-dimensional holes in GaAs,” Physical Review B, vol. 74, no. 20, Article ID 201302, 2006. View at Publisher · View at Google Scholar
- J. M. Blatt, K. W. Böer, and W. Brandt, “Bose-einstein condensation of excitons,” Physical Review, vol. 126, no. 5, pp. 1691–1692, 1962. View at Publisher · View at Google Scholar
- S. A. Moskalenko and D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons and Coherent Nonlinear Optics with Excitons, Cambridge University Press, Cambridge, UK, 2000.