Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2011, Article ID 727958, 22 pages
http://dx.doi.org/10.1155/2011/727958
Review Article

Experimental Progress towards Probing the Ground State of an Electron-Hole Bilayer by Low-Temperature Transport

1Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
2Department of Electronic and Electrical Engineering, University College, London WC1E7JE, UK

Received 27 May 2010; Accepted 27 October 2010

Academic Editor: Milica Milovanovic

Copyright © 2011 K. Das Gupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Yu. E. Lozovik and V. I. Yudson, “A new mechanism for superconductivity: pairing between spatially separated electrons and holes,” Soviet Physics Journal of Experimental and Theoretical Physics, vol. 44, p. 389, 1976. View at Google Scholar
  2. Yu. E. Lozovik and V. I. Yudson, “Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism,” Journal of Experimental and Theoretical Physics Letters, vol. 22, p. 274, 1975. View at Google Scholar
  3. P. J. Price, “Hot electron effects in heterolayers,” Physica B+C, vol. 117-118, no. 2, pp. 750–752, 1983. View at Google Scholar · View at Scopus
  4. M. B. Pogrebinskii, “Mutual drag of carriers in a semiconductor-insulator-semiconductor system,” Soviet Physics: Semiconductors, vol. 11, no. 4, pp. 372–376, 1977. View at Google Scholar · View at Scopus
  5. A. P. Jauho and H. Smith, “Coulomb drag between parallel two-dimensional electron systems,” Physical Review B, vol. 47, no. 8, pp. 4420–4428, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Vignale and A. H. MacDonald, “Drag in paired electron-hole layers,” Physical Review Letters, vol. 76, no. 15, pp. 2786–2789, 1996. View at Google Scholar · View at Scopus
  7. S. Conti, G. Vignale, and A. H. MacDonald, “Engineering superfluidity in electron-hole double layers,” Physical Review B, vol. 57, no. 12, pp. R6846–R6849, 1998. View at Google Scholar · View at Scopus
  8. B. Y. K. Hu, “Prospecting for the superfluid transition in electron-hole coupled quantum wells using Coulomb drag,” Physical Review Letters, vol. 85, no. 4, pp. 820–823, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. A. V. Balatsky, Y. N. Joglekar, and P. B. Littlewood, “Dipolar superfluidity in electron-hole bilayer systems,” Physical Review Letters, vol. 93, no. 26, Article ID 266801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. N. Joglekar, A. V. Balatsky, and M. P. Lilly, “Excitonic condensate and quasiparticle transport in electron-hole bilayer systems,” Physical Review B, vol. 72, no. 20, Article ID 205313, 6 pages, 2005. View at Publisher · View at Google Scholar
  11. P. B. Littlewood and X. Zhu, “Possibilities for exciton condensation in semiconductor quantum-well structures,” Physica Scripta, vol. T68, p. 56, 1996. View at Google Scholar
  12. J. Hubbard, “The description of collective motions in terms of many-body perturbation theory II. The correlation energy of a free electron gas,” Proceedings of the Royal Society of London A, vol. 243, p. 336, 1958. View at Google Scholar
  13. K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, “Electron correlations at metallic densities,” Physical Review, vol. 176, no. 2, pp. 589–599, 1968. View at Publisher · View at Google Scholar · View at Scopus
  14. K. S. Singwi and M. P. Tosi, “Correlations in electron liquids,” in Solid State Physics: Advances in Research and Applications, H. Ehrenreich, Ed., vol. 36, pp. 177–266, Academic Press, New York, NY, USA, 1981. View at Google Scholar
  15. L. Zheng and A. H. MacDonald, “Correlation in double-layer two-dimensional electron-gas systems: Singwi-Tosi-Land-Sjölander theory at B=0,” Physical Review B, vol. 49, no. 8, pp. 5522–5530, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Świerkowski, J. Szymański, and Z. W. Gortel, “Coupled electron-hole transport: beyond the mean field approximation,” Physical Review Letters, vol. 74, no. 16, pp. 3245–3248, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Liu, L. Świerkowski, D. Neilson, and J. Szymański, “Static and dynamic properties of coupled electron-electron and electron-hole layers,” Physical Review B, vol. 53, no. 12, pp. 7923–7931, 1996. View at Google Scholar · View at Scopus
  18. L. Liu, L. Świerkowski, and D. Neilson, “Exciton and charge density wave formation in spatially separated electron - Hole liquids,” Physica B, vol. 249–251, pp. 594–597, 1998. View at Google Scholar · View at Scopus
  19. U. Sivan, P. M. Solomon, and H. Shtrikman, “Coupled electron-hole transport,” Physical Review Letters, vol. 68, no. 8, pp. 1196–1199, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. B. E. Kane, J. P. Eisenstein, W. Wegscheider, L. N. Pfeiffer, and K. W. West, “Separately contacted electron-hole double layer in a GaAs/AlxGa1xAs heterostructure,” Applied Physics Letters, vol. 65, no. 25, pp. 3266–3268, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Rubel, A. Fischer, W. Dietsche, K. von Klitzing, and K. Eberl, “Fabrication of indepedently contacted and tuneable 2D electron-hole systems in GaAs-AlGaAs double quantum wells,” Materials Science and Engineering B, vol. 51, p. 205, 1998. View at Google Scholar
  22. M. Pohlt, M. Lynass, J. G. S. Lok et al., “Closely spaced and separately contacted two-dimensional electron and hole gases by in situ focused-ion implantation,” Applied Physics Letters, vol. 80, no. 12, p. 2105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Keogh, K. Das Gupta, H. E. Beere, D. A. Ritchie, and M. Pepper, “Fabrication of closely spaced, independently contacted electron-hole bilayers in GaAs-AlGaAs heterostructures,” Applied Physics Letters, vol. 87, no. 20, Article ID 202104, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Seamons, D. R. Tibbetts, J. L. Reno, and M. P. Lilly, “Undoped electron-hole bilayers in a GaAs/AlGaAs double quantum well,” Applied Physics Letters, vol. 90, no. 5, Article ID 052103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. Eisenstein, L. N. Pfieffer, and K. W. West, “Independently contacted 2-dimensional electron systems in double quantum wells,” Applied Physics Letters, vol. 57, p. 2324, 1990. View at Google Scholar
  26. A. F. Croxall, K. Das Gupta, C. A. Nicoll et al., “Patterned backgating using single-sided mask aligners: application to density-matched electron-hole bilayers,” Journal of Applied Physics, vol. 104, no. 11, Article ID 113715, 2008. View at Publisher · View at Google Scholar
  27. M. V. Weckwerth, J. A. Simmons, N. E. Harff et al., “Epoxy bond and stop-etch (EBASE) technique enabling backside processing of (AI)GaAs heterostructures,” Superlattices and Microstructures, vol. 20, no. 4, pp. 561–567, 1996. View at Publisher · View at Google Scholar
  28. N. P. R. Hill, J. T. Nicholls, E. H. Linfield et al., “Correlation effects on the coupled plasmon modes of a double quantum well,” Physical Review Letters, vol. 78, no. 11, pp. 2204–2207, 1997. View at Google Scholar
  29. M. Prunnila, S. J. Laakso, J. M. Kivioja, and J. Ahopelto, “Electrons and holes in Si quantum well: a room-temperature transport and drag resistance study,” Applied Physics Letters, vol. 93, no. 11, Article ID 112113, 2008. View at Publisher · View at Google Scholar
  30. K. Takashina, K. Nishiguchi, Y. Ono et al., “Electrons and holes in a 40 nm thick silicon slab at cryogenic temperatures,” Applied Physics Letters, vol. 94, no. 14, Article ID 142104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Farrer, A. F. Croxall, K. D. Gupta et al., “MBE growth and patterned backgating of electron-hole bilayer structures,” Journal of Crystal Growth, vol. 311, no. 7, pp. 1988–1993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. P. Eisenstein and A. H. MacDonald, “Bose-Einstein condensation of excitons in bilayer electron systems,” Nature, vol. 432, no. 7018, pp. 691–694, 2004. View at Publisher · View at Google Scholar · View at PubMed
  33. M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “Vanishing hall resistance at high magnetic field in a double-layer two-dimensional electron system,” Physical Review Letters, vol. 93, no. 3, Article ID 036801, 2004. View at Publisher · View at Google Scholar
  34. L. Tiemann, J. G. S. Lok, W. Dietsche et al., “Exciton condensate at a total filling factor of one in Corbino two-dimensional electron bilayers,” Physical Review B, vol. 77, no. 3, Article ID 033306, 2008. View at Publisher · View at Google Scholar
  35. E. Tutuc, M. Shayegan, and D. A. Huse, “Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing,” Physical Review Letters, vol. 93, no. 3, Article ID 036802, 2004. View at Publisher · View at Google Scholar
  36. T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, “Mutual friction between parallel two-dimensional electron systems,” Physical Review Letters, vol. 66, no. 9, pp. 1216–1219, 1991. View at Publisher · View at Google Scholar
  37. M. C. Bønsager, K. Flensberg, B. Y. K. Hu, and A. H. MacDonald, “Frictional drag between quantum wells mediated by phonon exchange,” Physical Review B, vol. 57, no. 12, pp. 7085–7102, 1998. View at Google Scholar
  38. A. Yurtsever, V. Moldoveanu, and B. Tanatar, “Many-body effects in the Coulomb drag between low density electron layers,” Solid State Communications, vol. 125, no. 11-12, pp. 575–579, 2003. View at Publisher · View at Google Scholar
  39. R. Asgari, B. Tanatar, and B. Davoudi, “Comparative study of screened interlayer interactions in the Coulomb drag effect in bilayer electron systems,” Physical Review B, vol. 77, no. 11, Article ID 115301, 2008. View at Publisher · View at Google Scholar
  40. S. Das Sarma and E. H. Hwang, “In-plane magnetodrag in dilute bilayer two-dimensional systems: a Fermi-liquid theory,” Physical Review B, vol. 71, no. 19, Article ID 195322, 5 pages, 2005. View at Publisher · View at Google Scholar
  41. E. H. Hwang and S. Das Sarma, “Transport and drag in undoped electron-hole bilayers,” Physical Review B, vol. 78, no. 7, Article ID 075430, 2008. View at Publisher · View at Google Scholar
  42. F. Stern, “Polarizability of a two-dimensional electron gas,” Physical Review Letters, vol. 18, no. 14, pp. 546–548, 1967. View at Publisher · View at Google Scholar
  43. L. Świerkowski, J. Szymański, and Z. W. Gortel, “Linear-response theory for multicomponent fermion systems and its application to transresistance in two-layer semiconductor structures,” Physical Review B, vol. 55, no. 4, pp. 2280–2292, 1997. View at Google Scholar
  44. S. Das Sarma and A. Madhukar, “Collective modes of spatially separated, two-component, two-dimensional plasma in solids,” Physical Review B, vol. 23, no. 2, pp. 805–815, 1981. View at Publisher · View at Google Scholar
  45. B. Y. K. Hu and J. W. Wilkins, “Two-stream instabilities in solid-state plasmas caused by conventional and unconventional mechanisms,” Physical Review B, vol. 43, no. 17, pp. 14009–14029, 1991. View at Publisher · View at Google Scholar
  46. M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “Evidence for 2k electron-electron scattering processes in Coulomb drag,” Solid State Communications, vol. 123, no. 12, pp. 515–519, 2002. View at Publisher · View at Google Scholar
  47. E. H. Hwang, S. Das Sarma, V. Braude, and A. Stern, “Frictional drag in dilute bilayer 2D hole systems,” Physical Review Letters, vol. 90, no. 8, Article ID 086801, 4 pages, 2003. View at Google Scholar
  48. R. Pillarisetty, H. Noh, D. C. Tsui, E. P. De Poortere, E. Tutuc, and M. Shayegan, “Frictional drag between two dilute two-dimensional hole layers,” Physical Review Letters, vol. 89, no. 1, Article ID 016805, 2002. View at Google Scholar
  49. C. Hodges, H. Smith, and J. W. Wilkins, “Effect of fermi surface geometry on electron-electron scattering,” Physical Review B, vol. 4, no. 2, pp. 302–311, 1971. View at Publisher · View at Google Scholar
  50. L. Zheng and A. H. MacDonald, “Coulomb drag between disordered two-dimensional electron-gas layers,” Physical Review B, vol. 48, no. 11, pp. 8203–8209, 1993. View at Publisher · View at Google Scholar
  51. J. A. Seamons, C. P. Morath, J. L. Reno, and M. P. Lilly, “Coulomb drag in the exciton regime in electron-hole bilayers,” Physical Review Letters, vol. 102, no. 2, Article ID 026804, 2009. View at Publisher · View at Google Scholar
  52. C. P. Morath, J. A. Seamons, J. L. Reno, and M. P. Lilly, “Density imbalance effect on the Coulomb drag upturn in an undoped electron-hole bilayer,” Physical Review B, vol. 79, no. 4, Article ID 041305, 2009. View at Publisher · View at Google Scholar
  53. A. F. Croxall, K. Das Gupta, C. A. Nicoll et al., “Anomalous coulomb drag in electron-hole bilayers,” Physical Review Letters, vol. 101, no. 24, Article ID 246801, 2008. View at Publisher · View at Google Scholar
  54. H. B. G. Casimir, “On Onsager's principle of microscopic reversibility,” Reviews of Modern Physics, vol. 17, no. 2-3, pp. 343–350, 1945. View at Publisher · View at Google Scholar
  55. J. Szymański, L. Wierkowski, and D. Neilson, “Correlations in coupled layers of electrons and holes,” Physical Review B, vol. 50, no. 15, pp. 11002–11007, 1994. View at Publisher · View at Google Scholar · View at Scopus
  56. M. J. Kellogg, Evidence for excitonic superfluidity in a two dimensional electron system, Ph.D. thesis, California Institute of Technology, 2005.
  57. C. P. Morath, J. A. Seamons, J. L. Reno, and M. P. Lilly, “Layer interdependence of transport in an undoped electron-hole bilayer,” Physical Review B, vol. 78, no. 11, Article ID 115318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Levchenko and A. Kamenev, “Coulomb drag at zero temperature,” Physical Review Letters, vol. 100, no. 2, Article ID 026805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “Coulomb drag in the extreme quantum limit,” Physical Review Letters, vol. 80, no. 8, pp. 1714–1717, 1998. View at Google Scholar · View at Scopus
  60. X. G. Feng, S. Zelakiewicz, H. Noh et al., “Negative electron drag and holelike behavior in the integer quantum hall regime,” Physical Review Letters, vol. 81, no. 15, pp. 3219–3222, 1998. View at Google Scholar · View at Scopus
  61. N. P. R. Hill, J. T. Nicholls, E. H. Linfield et al., “Electron-electron scattering between closely spaced two-dimensional electron gases,” Physica B, vol. 249–251, pp. 868–872, 1998. View at Google Scholar · View at Scopus
  62. J. G. S. Lok, S. Kraus, M. Pohlt et al., “Spin effects in the magnetodrag between double quantum wells,” Physical Review B, vol. 63, no. 4, Article ID 041305, 4 pages, 2001. View at Google Scholar
  63. K. Muraki, J. G. S. Lok, S. Kraus et al., “Coulomb drag as a probe of the nature of compressible states in a magnetic field,” Physical Review Letters, vol. 92, no. 24, Article ID 246801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Alkauskas, K. Flensberg, B. Y. K. Hu, and A. P. Jauho, “Sign reversal of drag in bilayer systems with in-plane periodic potential modulation,” Physical Review B, vol. 66, no. 20, Article ID 201304, 2002. View at Google Scholar · View at Scopus
  65. S. De Palo, F. Rapisarda, and G. Senatore, “Excitonic condensation in a symmetric electron-hole bilayer,” Physical Review Letters, vol. 88, no. 20, Article ID 206401, 4 pages, 2002. View at Google Scholar · View at Scopus
  66. L. Onsager, “Reciprocal relations in irreversible processes. I,” Physical Review, vol. 37, no. 4, pp. 405–426, 1931. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  67. L. Onsager, “Reciprocal relations in irreversible processes. II,” Physical Review, vol. 38, no. 12, pp. 2265–2279, 1931. View at Publisher · View at Google Scholar · View at Scopus
  68. A. P. Mills Jr., A. P. Ramirez, L. N. Pfeiffer, and K. W. West, “Nonmonotonic temperature-dependent resistance in low density 2D hole gases,” Physical Review Letters, vol. 83, no. 14, pp. 2805–2808, 1999. View at Google Scholar
  69. S. Das Sarma and E. H. Hwang, “Calculated temperature-dependent resistance in low-density two-dimensional hole gases in GaAs heterostructures,” Physical Review B, vol. 61, no. 12, pp. R7838–R7841, 2000. View at Google Scholar
  70. A. F. Croxall, K. Das Gupta, C. A. Nicoll et al., “Possible effect of collective modes in zero magnetic field transport in an electron-hole bilayer,” Physical Review B, vol. 80, no. 12, Article ID 125323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A. F. Croxall, K. Das Gupta, C. A. Nicoll et al., “Towards the ground state of an electron-hole bilayer,” Physica E, vol. 42, no. 4, pp. 1247–1250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Huang, D. S. Novikov, D. C. Tsui, L. N. Pfieffer, and K. W. West, “Interaction effects in the transport of two dimensional holes in GaAs,” http://arxiv.org/abs/cond-mat/0610320.
  73. L. H. Ho, W. R. Clarke, A. P. Micolich et al., “Effect of screening long-range Coulomb interactions on the metallic behavior in two-dimensional hole systems,” Physical Review B, vol. 77, no. 20, Article ID 201402, 2008. View at Publisher · View at Google Scholar
  74. L. Świerkowski, J. Szymański, and Z. W. Gortel, “Intrinsic limits on carrier mobilities in double-layer systems,” Journal of Physics Condensed Matter, vol. 8, no. 18, pp. L295–L300, 1996. View at Google Scholar
  75. G. Bergman, “Weak Localisation in thin films: a time of flight experiment with conduction electrons,” Physics Reports, vol. 107, no. 1, pp. 1–58, 1984. View at Google Scholar
  76. R. K. Moudgil, G. Senatore, and L. K. Saini, “Dynamic correlations in symmetric electron-electron and electron-hole bilayers,” Physical Review B, vol. 66, no. 20, Article ID 205316, 10 pages, 2002. View at Google Scholar
  77. R. K. Moudgil, “Coupled electron-hole quantum well structure: mass asymmetry and finite width effects,” Journal of Physics Condensed Matter, vol. 18, no. 4, pp. 1285–1301, 2006. View at Publisher · View at Google Scholar
  78. P. Ludwig, A. Filinov, YU. E. Lozovik, H. Stolz, and M. Bonitz, “Crystallization in mass-asymmetric electron-hole bilayers,” Contributions to Plasma Physics, vol. 47, no. 4-5, pp. 335–344, 2007. View at Publisher · View at Google Scholar
  79. B. Tanatar and D. M. Ceperley, “Ground state of the two-dimensional electron gas,” Physical Review B, vol. 39, no. 8, pp. 5005–5016, 1989. View at Publisher · View at Google Scholar
  80. J. Huang, D. S. Novikov, D. C. Tsui, L. N. Pfeiffer, and K. W. West, “Nonactivated transport of strongly interacting two-dimensional holes in GaAs,” Physical Review B, vol. 74, no. 20, Article ID 201302, 2006. View at Publisher · View at Google Scholar
  81. J. M. Blatt, K. W. Böer, and W. Brandt, “Bose-einstein condensation of excitons,” Physical Review, vol. 126, no. 5, pp. 1691–1692, 1962. View at Publisher · View at Google Scholar
  82. S. A. Moskalenko and D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons and Coherent Nonlinear Optics with Excitons, Cambridge University Press, Cambridge, UK, 2000.