Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2012, Article ID 951976, 5 pages
http://dx.doi.org/10.1155/2012/951976
Research Article

Micromagnetic Study of Synchronization of Nonlinear Spin-Torque Oscillators to Microwave Current and Field

1Dipartimento di Elettronica, Informatica e Sistemistica, University della Calabria, Via P. Bucci 42C, 87036 Rende, Italy
2Dipartimento di Fisica della Materia e Ingegneria Elettronica, University degli studi di Messina, C.da di Dio, 98100 Messina, Italy
3Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy

Received 30 March 2012; Revised 17 July 2012; Accepted 23 July 2012

Academic Editor: Giancarlo Consolo

Copyright © 2012 M. Carpentieri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” Journal of Magnetism and Magnetic Materials, vol. 159, no. 1-2, pp. L1–L7, 1996. View at Publisher · View at Google Scholar
  2. J. C. Slonczewski, “Excitation of spin waves by an electric current,” Journal of Magnetism and Magnetic Materials, vol. 195, no. 2, pp. L261–L268, 1999. View at Publisher · View at Google Scholar
  3. J. C. Slonczewski, “Currents and torques in metallic magnetic multilayers,” Journal of Magnetism and Magnetic Materials, vol. 247, no. 3, pp. 324–338, 2002. View at Publisher · View at Google Scholar
  4. L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current,” Physical Review B, vol. 54, no. 13, pp. 9353–9358, 1996. View at Publisher · View at Google Scholar
  5. I. N. Krivorotov, N. C. Emley, J. C. Sankey, S. I. Kiselev, D. C. Ralph, and R. A. Buhrman, “Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques,” Science, vol. 307, no. 5707, pp. 228–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. C. Ralph and M. D. Stiles, “Spin transfer torques,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 7, pp. 1190–1216, 2008. View at Publisher · View at Google Scholar
  7. S. I. Klselev, J. C. Sankey, I. N. Krivorotov et al., “Microwave oscillations of a nanomagnet driven by a spin-polarized current,” Nature, vol. 425, no. 6956, pp. 380–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Tulapurkar, Y. Suzuki, A. Fukushima et al., “Spin-torque diode effect in magnetic tunnel junctions,” Nature, vol. 438, no. 7066, pp. 339–342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, “Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts,” Physical Review Letters, vol. 92, no. 2, Article ID 027201, 4 pages, 2004. View at Google Scholar · View at Scopus
  10. A. Slavin and V. Tiberkevich, “Nonlinear auto-oscillator theory of microwave generation by spin-polarized current,” IEEE Transactions on Magnetics, vol. 45, no. 4, pp. 1875–1918, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, and J. A. Katine, “Mutual phase-locking of microwave spin torque nano-oscillators,” Nature, vol. 437, no. 7057, pp. 389–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, “Phase-locking in double-point-contact spin-transfer devices,” Nature, vol. 437, no. 7057, pp. 393–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Grollier, V. Cros, and A. Fert, “Synchronization of spin-transfer oscillators driven by stimulated microwave currents,” Physical Review B, vol. 73, no. 6, Article ID 060409(R), 4 pages, 2006. View at Publisher · View at Google Scholar
  14. W. H. Rippard, M. R. Pufall, S. Kaka, T. J. Silva, S. E. Russek, and J. A. Katine, “Injection locking and phase control of spin transfer nano-oscillators,” Physical Review Letters, vol. 95, no. 6, Article ID 067203, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Urazhdin, P. Tabor, V. Tiberkevich, and A. Slavin, “Fractional synchronization of spin-torque nano-oscillators,” Physical Review Letters, vol. 105, no. 10, Article ID 104101, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Carpentieri, G. Finocchio, B. Azzerboni, and L. Torres, “Spin-transfer-torque resonant switching and injection locking in the presence of a weak external microwave field for spin valves with perpendicular materials,” Physical Review B, vol. 82, no. 9, Article ID 094434, 8 pages, 2010. View at Publisher · View at Google Scholar
  17. G. Consolo, V. Puliafito, G. Finocchio et al., “Combined frequency-amplitude nonlinear modulation: theory and applications,” IEEE Transactions on Magnetics, vol. 46, no. 9, pp. 3629–3634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Bonin, G. Bertotti, C. Serpico, I. D. Mayergoyz, and M. D'Aquino, “Analytical treatment of synchronization of spin-torque oscillators by microwave magnetic fields,” European Physical Journal B, vol. 68, no. 2, pp. 221–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Romeo, G. Finocchio, M. Carpentieri, L. Torres, G. Consolo, and B. Azzerboni, “A numerical solution of the magnetizationreversal modeling in a permalloy thin film using fifth order Runge-Kutta method with adaptive step size control,” Physica B, vol. 403, no. 2-3, pp. 464–468, 2008. View at Publisher · View at Google Scholar
  20. E. Martinez, L. Torres, L. Lopez-Diaz, M. Carpentieri, and G. Finocchio, “Spin-polarized current-driven switching in permalloy nanostructures,” Journal of Applied Physics, vol. 97, no. 10, Article ID 10E302, 3 pages, 2005. View at Publisher · View at Google Scholar
  21. Martinez et al., “standard problem #4 report,” The free layer has been discretized in computational cells of 5×5×4 nm3. The time step used was 32 fs, http://www.ctcms.nist.gov/~rdm/mumag.org.html.
  22. M. Carpentieri, L. Torres, B. Azzerboni, G. Finocchio, G. Consolo, and L. Lopez-Diaz, “Magnetization dynamics driven by spin-polarized current in nanomagnets,” Journal of Magnetism and Magnetic Materials, vol. 316, no. 2, pp. 488–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. I. N. Krivorotov, D. V. Berkov, N. L. Gorn et al., “Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves,” Physical Review B, vol. 76, no. 2, Article ID 024418, 14 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Maffezzoni, “Computing the synchronization regions of injection-locked strongly nonlinear oscillators for frequency division applications,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 12, pp. 1849–1857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Tabor, V. Tiberkevich, A. Slavin, and S. Urazhdin, “Hysteretic synchronization of nonlinear spin-torque oscillators,” Physical Review B, vol. 82, no. 2, Article ID 020407, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Zhou, J. Persson, S. Bonetti, and J. Akerman, “Tunable intrinsic phase of a spin torque oscillator,” Applied Physics Letters, vol. 92, no. 9, Article ID 092505, 3 pages, 2008. View at Publisher · View at Google Scholar
  27. G. Finocchio, G. Siracusano, V. Tiberkevich, I. N. Krivorotov, L. Torres, and B. Azzerboni, “Time-domain study of frequency-power correlation in spin-torque oscillators,” Physical Review B, vol. 81, no. 18, Article ID 184411, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus