Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2012, Article ID 954196, 21 pages
http://dx.doi.org/10.1155/2012/954196
Review Article

Static Properties and Current-Driven Dynamics of Domain Walls in Perpendicular Magnetocrystalline Anisotropy Nanostrips with Rectangular Cross-Section

Universidad de Salamanca, Plaza de los Caidos s/n, 38008 Salamanca, Spain

Received 26 March 2012; Accepted 28 May 2012

Academic Editor: Giancarlo Consolo

Copyright © 2012 Eduardo Martinez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hubert and R. Schafer, Magnetic Domains. The Analysis of Magnetic Microstructures, Springer, 1998.
  2. L. Berger, “Low-field magnetoresistance and domain drag in ferromagnets,” Journal of Applied Physics, vol. 49, article 2156, 6 pages, 1978. View at Publisher · View at Google Scholar
  3. L. Berger, “Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films,” Journal of Applied Physics, vol. 55, article 1954, 3 pages, 1984. View at Publisher · View at Google Scholar
  4. S. Zhang, P. M. Levy, and A. Fert, “Mechanisms of spin-polarized current-driven magnetization switching,” Physical Review Letters, vol. 88, no. 23, Article ID 236601, 2004. View at Google Scholar
  5. S. Zhang and Z. Li, “Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets,” Physical Review Letters, vol. 93, no. 12, Article ID 127204, 2004. View at Google Scholar
  6. G. Tatara and H. Kohno, “Theory of current-driven domain wall motion: spin transfer versus momentum transfer,” Physical Review Letters, vol. 92, no. 8, Article ID 086601, 2004. View at Publisher · View at Google Scholar
  7. X. Waintal and M. Viret, “Current-induced distortion of a magnetic domain wall,” Europhysics Letters, vol. 65, no. 3, pp. 427–433, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, “Micromagnetic understanding of current-driven domain wall motion in patterned nanowires,” Europhysics Letters, vol. 69, no. 6, pp. 990–996, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Grollier, D. Lacour, V. Cros et al., “Switching the magnetic configuration of a spin valve by current-induced domain wall motion,” Journal of Applied Physics, vol. 92, no. 8, p. 4825, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Vernier, D. A. Allwood, D. Atkinson, M. D. Cooke, and R. P. Cowburn, “Domain wall propagation in magnetic nanowires by spin-polarized current injection,” Europhysics Letters, vol. 65, no. 4, pp. 526–532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kläui, C. A. F. Vaz, J. A. C. Bland et al., “Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures,” Physical Review Letters, vol. 94, no. 10, Article ID 106601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. S. D. Beach, C. Knutson, C. Nistor, M. Tsoi, and J. L. Erskine, “Nonlinear domain-wall velocity enhancement by spin-polarized electric current,” Physical Review Letters, vol. 97, no. 5, Article ID 057203, 2006. View at Publisher · View at Google Scholar
  13. M. Laufenberg, W. Buhrer, D. Bedau et al., “Temperature dependence of the spin torque effect in current-induced domain wall motion,” Physical Review Letters, vol. 97, no. 4, Article ID 046602, 4 pages, 2006. View at Publisher · View at Google Scholar
  14. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang, and S. S. P. Parkin, “Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires,” Physical Review Letters, vol. 97, no. 20, Article ID 207205, 2006. View at Publisher · View at Google Scholar
  15. L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, and S. S. P. Parkin, “Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length,” Nature, vol. 443, no. 7108, pp. 197–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y. B. Bazaliy, and S. S. P. Parkin, “Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires,” Physical Review Letters, vol. 98, no. 3, Article ID 037204, 2007. View at Publisher · View at Google Scholar
  17. L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, and S. Parkin, “Resonant amplification of magnetic domain-wall motion by a train of current pulses,” Science, vol. 315, no. 5818, pp. 1553–1556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Bedau, M. Klaui, S. Krzyk, U. Rudiger, G. Faini, and L. Vila, “Detection of current-induced resonance of geometrically confined domain walls,” Physical Review Letters, vol. 99, no. 14, Article ID 146601, 2007. View at Publisher · View at Google Scholar
  19. G. Meier, M. Bolte, R. Eiselt, B. Kruger, P. Dong-Hyun, and K. Fischer, “Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses,” Physical Review Letters, vol. 98, no. 18, Article ID 187202, 2007. View at Publisher · View at Google Scholar
  20. S. Laribi, V. Cros, M. Muoz et al., “Reversible and irreversible current induced domain wall motion in CoFeB based spin valves stripes,” Physical Review Letters, vol. 90, no. 23, Article ID 232505, 3 pages, 2007. View at Publisher · View at Google Scholar
  21. M. Y. Im, L. Bocklage, P. Fischer, and G. Meier, “Direct observation of stochastic domain-wall depinning in magnetic nanowires,” Physical Review Letters, vol. 102, no. 14, Article ID 147204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Lepadatu, A. Vanhaverbeke, D. Atkinson, R. Allenspanch, and C. H. Marrow, “Dependence of domain-wall depinning threshold current on pinning profile,” Physical Review Letters, vol. 102, no. 12, Article ID 127203, 4 pages, 2009. View at Publisher · View at Google Scholar
  23. S. G. S. D. Beach, M. Tsoi, and J. L. Erskine, “Current-induced domain wall motion,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 7, pp. 1272–1281, 2008. View at Publisher · View at Google Scholar
  24. R. A. Duine, A. S. Nunez, and A. H. MacDonald, “Thermally assisted current-driven domain-wall motion,” Physical Review Letters, vol. 98, no. 5, Article ID 056605, 2007. View at Publisher · View at Google Scholar
  25. A. Mougin, M. Cormier, J. P. Adam, P. J. Metaxas, and J. Ferre, “Domain wall mobility, stability and Walker breakdown in magnetic nanowires,” Europhysics Letters, vol. 78, no. 5, Article ID 57007, 2007. View at Publisher · View at Google Scholar
  26. E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan, and O. Alejos, “Thermal effects in domain wall motion: Micromagnetic simulations and analytical model,” Physical Review B, vol. 75, no. 17, Article ID 174409, 11 pages, 2007. View at Publisher · View at Google Scholar
  27. E. Martinez, L. Lopez-Diaz, O. Alejos, L. Torres, and C. Tristan, “Thermal effects on domain wall depinning from a single notch,” Physical Review Letters, vol. 98, no. 26, Article ID 267202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Martinez, L. Lopez-Diaz, O. Alejos, and L. Torres, “Resonant domain wall depinning induced by oscillating spin-polarized currents in thin ferromagnetic strips,” Physical Review B, vol. 77, no. 14, Article ID 144417, 2008. View at Publisher · View at Google Scholar
  29. E. Martinez, L. Lopez-Diaz, O. Alejos, L. Torres, and M. Carpentieri, “Domain-wall dynamics driven by short pulses along thin ferromagnetic strips: micromagnetic simulations and analytical description,” Physical Review B, vol. 79, no. 9, Article ID 094430, 14 pages, 2009. View at Publisher · View at Google Scholar
  30. O. Boulle, G. Malinowski, and M. Klaui, “Current-induced domain wall motion in nanoscale ferromagnetic elements,” Materials Science and Engineering R, vol. 72, no. 9, pp. 159–187, 2011. View at Publisher · View at Google Scholar
  31. D. A. Allwood, G. Xiong, M. D. Cooke et al., “Submicrometer ferromagnetic NOT gate and shift register,” Science, vol. 296, no. 5575, pp. 2003–2006, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, “Magnetic domain-wall logic,” Science, vol. 309, no. 5741, pp. 1688–1692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Xu, K. Xia, C. Gu, L. Tang, H. Yang, and J. Li, “An all-metallic logic gate based on current-driven domain wall motion,” Nature Nanotechnology, vol. 3, no. 2, pp. 97–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. S. P. Parkin, “Shiftable magnetic shift register and method of using the same,” U.S. Patent No. 6834005, 2004.
  35. S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science, vol. 320, no. 5873, pp. 190–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Atkinson, D. S. Eastwood, and L. K. Bogart, “Controlling domain wall pinning in planar nanowires by selecting domain wall type and its application in a memory concept,” Applied Physics Letters, vol. 92, no. 2, Article ID 022510, 3 pages, 2008. View at Publisher · View at Google Scholar
  37. J. He and S. Zhang, “Localized steady-state domain wall oscillators,” Applied Physics Letters, vol. 90, no. 14, Article ID 142508, 2007. View at Publisher · View at Google Scholar
  38. T. Ono and Y. Nakatani, “Magnetic domain wall oscillator,” Applied Physics Express, vol. 1, Article ID 061301, 2008. View at Publisher · View at Google Scholar
  39. L. Berger, “Possible existence of a Josephson effect in ferromagnets,” Physical Review B, vol. 33, no. 3, pp. 1572–1578, 1986. View at Publisher · View at Google Scholar
  40. A. Bisig, L. Heyne, O. Boulle, and M. Klaui, “Tunable steady-state domain wall oscillator with perpendicular magnetic anisotropy,” Applied Physics Letters, vol. 95, Article ID 162504, 2009. View at Publisher · View at Google Scholar
  41. E. Martinez, L. Torres, and L. Lopez-Diaz, “Oscillator based on pinned domain walls driven by direct current,” Physical Review B, vol. 83, no. 17, Article ID 174444, 10 pages, 2011. View at Publisher · View at Google Scholar
  42. E. Martinez, G. Finocchio, and M. Carpentieri, “Stochastic resonance of a domain wall in a stripe with two pinning sites,” Applied Physics Letters, vol. 98, no. 7, Article ID 072507, 3 pages, 2011. View at Publisher · View at Google Scholar
  43. D. Ravelosona, F. Caysol, J. Wunderlich et al., “Dynamics of magnetization reversal in a mesoscopic wire,” Journal of Magnetism and Magnetic Materials, vol. 249, no. 1-2, pp. 170–174, 2002. View at Publisher · View at Google Scholar
  44. D. Ravelosona, D. Lacour, J. A. Katine, B. D. Terris, and C. Chappert, “Nanometer scale observation of high efficiency thermally assisted current-driven domain wall depinning,” Physical Review Letters, vol. 95, no. 11, Article ID 117203, 4 pages, 2005. View at Publisher · View at Google Scholar
  45. D. Ravelosona, S. Mangin, J. A. Katine, E. E. Fullerton, and B. D. Terris, “Threshold currents to move domain walls in films with perpendicular anisotropy,” Applied Physics Letters, vol. 90, no. 7, Article ID 072508, 3 pages, 2007. View at Publisher · View at Google Scholar
  46. C. Burrowes, D. Ravelosona, C. Chappert et al., “Role of pinning in current driven domain wall motion in wires with perpendicular anisotropy,” Applied Physics Letters, vol. 93, no. 17, Article ID 172513, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. T. A. Moore, I. M. Miron, G. Gaudin et al., “High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy,” Applied Physics Letters, vol. 93, no. 26, Article ID 262504, 3 pages, 2008. View at Publisher · View at Google Scholar
  48. O. Boulle, J. Kimling, P. Warnicke et al., “Nonadiabatic spin transfer torque in high anisotropy magnetic nanowires with narrow domain walls,” Physical Review Letters, vol. 101, no. 21, Article ID 216601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Koyama, G. Yamada, H. Taniwaga et al., “Control of domain wall position by electrical current in structured Co/Ni wire with perpendicular agnetic anisotropy,” Applied Physics Express, vol. 1, Article ID 101303, 3 pages, 2008. View at Publisher · View at Google Scholar
  50. H. Tanigawa, K. Kondou, T. Koyama et al., “Current-driven domain wall motion in CoCrPt wires with perpendicular magnetic anisotropy,” Applied Physics Express, vol. 1, no. 1, Article ID 011301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. I. M. Miron, P. J. Zermatten, G. Gaudin, S. Auffret, B. Rodmacq, and A. Schuhl, “Domain wall spin torquemeter,” Physical Review Letters, vol. 102, no. 13, Article ID 137202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. L. San Emeterio Alvarez, K. Y. Wang, S. Lepadatu, S. Landi, S. J. Bending, and C. H. Marrows, “Spin-transfer-torque-assisted domain-wall creep in a Co/Pt multilayer wire,” Physical Review Letters, vol. 104, no. 13, Article ID 137205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Burrowes, A. P. Mihai, D. Ravelosona et al., “Non-adiabatic spin-torques in narrow magnetic domain walls,” Nature Physics, vol. 6, no. 1, pp. 17–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Tanigawa, T. Koyama, G. Yamada et al., “Domain wall motion induced by electric current in a perpendicularly magnetized Co/Ni nano-wire,” Applied Physics Express, vol. 2, no. 5, Article ID 053002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. I. M. Miron, T. Moore, H. Szambolics et al., “Fast current-induced domain-wall motion controlled by the Rashba effect,” Nature Materials, vol. 10, no. 6, pp. 419–423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Cormier, A. Mougin, J. Ferre et al., “Fast propagation of weakly pinned domain walls and current-assisted magnetization reversal in He+-irradiated Pt/Co/Pt nanotracks,” Journal of Physics D, vol. 44, no. 21, Article ID 215002, 2011. View at Publisher · View at Google Scholar
  57. S. Fukami, T. Suzuki, Y. Nakatani et al., “Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire,” Applied Physics Letters, vol. 98, no. 8, Article ID 082504, 3 pages, 2011. View at Publisher · View at Google Scholar
  58. S. Fukami, T. Suzuki, Y. Nakatani et al., “Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire,” Applied Physics Letters, vol. 98, no. 8, Article ID 082504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Ueda, T. Koyama, D. Chiba et al., “Current-induced magnetic domain wall motion in Co/Ni nanowire at low temperature,” Applied Physics Express, vol. 4, no. 6, Article ID 063003, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. J. P. Adam, N. Vernier, J. Ferre et al., “Nonadiabatic spin-transfer torque in (Ga,Mn)As with perpendicular anisotropy,” Physical Review B, vol. 80, no. 19, Article ID 193204, 4 pages, 2009. View at Publisher · View at Google Scholar
  61. A. Kanda, A. Suzuki, F. Masukura, and H. Ohno, “Domain wall creep in (Ga,Mn)As,” Applied Physics Letters, vol. 97, no. 3, Article ID 032504, 3 pages, 2010. View at Publisher · View at Google Scholar
  62. S.-W. Jung, W. Kim, T.-D. Lee, K.-J. Lee, and H.-W. Lee, “Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy,” Applied Physics Letters, vol. 92, no. 20, Article ID 202508, 3 pages, 2008. View at Publisher · View at Google Scholar
  63. T. Suzuki, S. Fukami, N. Ohshima, K. Nagahara, and N. Ishiwata, “Analysis of current-driven domain wall motion from pinning sites in nanostrips with perpendicular magnetic anisotropy,” Applied Physics Letters, vol. 103, no. 11, Article ID 113913, 6 pages, 2008. View at Publisher · View at Google Scholar
  64. S. Fukami, T. Suzuki, N. Ohshima, K. Nagahara, and N. Ishiwata, “Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy,” Applied Physics Letters, vol. 103, no. 7, Article ID 07E718, 2008. View at Publisher · View at Google Scholar
  65. J.-V. Kim and C. Burrowes, “Influence of magnetic viscosity on domain wall dynamics under spin-polarized currents,” Physical Review B, vol. 80, no. 21, Article ID 214424, 8 pages, 2009. View at Publisher · View at Google Scholar
  66. E. Martinez, L. Lopez-Diaz, O. Alejos, and L. Torres, “Thermally activated domain wall depinning in thin strips with high perpendicular magnetocrystalline anisotropy,” Journal of Applied Physics, vol. 106, no. 4, Article ID 043914, 5 pages, 2009. View at Publisher · View at Google Scholar
  67. F. Garcia-Sanchez, H. Szambolics, A. P. Mihai et al., “Effect of crystalline defects on domain wall motion under field and current in nanowires with perpendicular magnetization,” Physical Review B, vol. 81, no. 13, Article ID 134408, 7 pages, 2010. View at Publisher · View at Google Scholar
  68. S. Emori and G. D. Beach, “Enhanced current-induced domain wall motion by tuning perpendicular magnetic anisotropy,” Applied Physics Letters, vol. 98, no. 13, Article ID 132508, 3 pages, 2011. View at Publisher · View at Google Scholar
  69. G. Consolo and E. Martinez, “The effect of dry friction on domain wall dynamics: a micromagnetic study,” Journal of Applied Physics, vol. 111, no. 7, Article ID 07D312, 3 pages, 2012. View at Google Scholar
  70. E. Martinez, “The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness,” Journal of Physics, vol. 24, Article ID 024206, 2012. View at Publisher · View at Google Scholar
  71. E. Martinez, “The influence of the Rashba field on the current-induced domain wall dynamics: a full micromagnetic analysis, including surface roughness and thermal effects,” Journal of Applied Physics, vol. 111, no. 7, Article ID 07D302, 3 pages, 2012. View at Publisher · View at Google Scholar
  72. E. Martinez, “Micromagnetic analysis of the Rashba field on current-induced domain wall propagation,” Journal of Applied Physics, vol. 111, no. 3, Article ID 033901, 6 pages, 2012. View at Google Scholar
  73. D. Weller, A. Moser, L. Folks et al., “High ku materials approach to 100 gbits/in2,” IEEE Transactions on Magnetics, vol. 36, no. 1, pp. 10–15, 2000. View at Google Scholar · View at Scopus
  74. P. J. Metaxas, J. P. Jamet, A. Mougin et al., “Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy,” Physical Review Letters, vol. 99, no. 21, Article ID 217208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. W. F. Brown, “Thermal fluctuations of a single-domain particle,” Physical Review, vol. 130, no. 5, pp. 1677–1686, 1963. View at Publisher · View at Google Scholar
  76. J. L. Garcia-Palacios and F. J. Lazaro, “Langevin-dynamics study of the dynamical properties of small magnetic particles,” Physical Review B, vol. 58, no. 22, pp. 14937–14958, 1998. View at Publisher · View at Google Scholar
  77. A. A. Thiele, “Steady-state motion of magnetic domains,” Physical Review Letters, vol. 30, no. 6, pp. 230–233, 1973. View at Publisher · View at Google Scholar
  78. T. W. Chiang, L. J. Chang, C. Yu et al., “Demonstration of edge roughness effect on the magnetization reversal of spin valve submicron wires,” Applied Physics Letters, vol. 97, no. 2, Article ID 022109, 3 pages, 2010. View at Publisher · View at Google Scholar
  79. I. M. Miron, G. Gaudin, S. Auffret et al., “Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer,” Nature Materials, vol. 9, no. 3, pp. 230–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Manchon and S. Zhang, “Theory of nonequilibrium intrinsic spin torque in a single nanomagnet,” Physical Review B, vol. 78, no. 21, Article ID 212405, 4 pages, 2008. View at Publisher · View at Google Scholar
  81. A. Manchon and S. Zhang, “Theory of spin torque due to spin-orbit coupling,” Physical Review B, vol. 79, no. 9, Article ID 094422, 9 pages, 2009. View at Publisher · View at Google Scholar
  82. R. A. Duine, “Spin pumping by a field-driven domain wall,” Physical Review B, vol. 77, no. 1, Article ID 014409, 5 pages, 2008. View at Publisher · View at Google Scholar
  83. A. Stern, “Berry’s phase, motive forces, and mesoscopic conductivity,” Physical Review Letters, vol. 68, no. 7, pp. 1022–1025, 1992. View at Publisher · View at Google Scholar
  84. C.-M. Ryu, “Spin motive force and faraday law for electrons in mesoscopic rings,” Physical Review Letters, vol. 76, no. 6, pp. 968–970, 1996. View at Publisher · View at Google Scholar
  85. S. E. Barnes and S. Maekawa, “Generalization of faraday’s law to include nonconservative spin forces,” Physical Review Letters, vol. 98, no. 24, Article ID 246601, 4 pages, 2007. View at Publisher · View at Google Scholar
  86. W. M. Saslow, “Spin pumping of current in non-uniform conducting magnets,” Physical Review B, vol. 76, no. 18, Article ID 184434, 14 pages, 2007. View at Publisher · View at Google Scholar
  87. Y. Tserkovnyak and M. Mecklenburg, “Electron transport driven by nonequilibrium magnetic textures,” Physical Review B, vol. 77, no. 13, Article ID 134407, 4 pages, 2008. View at Publisher · View at Google Scholar
  88. R. A. Duine, “Effects of nonadiabaticity on the voltage generated by a moving domain wall,” Physical Review B, vol. 79, no. 1, Article ID 014407, 8 pages, 2009. View at Publisher · View at Google Scholar
  89. S. A. Yang, G. S. D. Beach, C. Knutson et al., “Universal electromotive force induced by domain wall motion,” Physical Review Letters, vol. 102, no. 6, Article ID 067201, 4 pages, 2009. View at Publisher · View at Google Scholar