Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013 (2013), Article ID 234546, 11 pages
Research Article

Structural, Optical Constants and Photoluminescence of ZnO Thin Films Grown by Sol-Gel Spin Coating

1Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6279, Université de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex, France
2National Institute of Laser Enhanced Science, Laser Sciences and Interactions, Cairo University, Giza 12613, Egypt
3Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt

Received 8 May 2013; Revised 17 August 2013; Accepted 4 September 2013

Academic Editor: Yuri Galperin

Copyright © 2013 Abdel-Sattar Gadallah and M. M. El-Nahass. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We report manufacturing and characterization of low cost ZnO thin films grown on glass substrates by sol-gel spin coating method. For structural properties, X-ray diffraction measurements have been utilized for evaluating the dominant orientation of the thin films. For optical properties, reflectance and transmittance spectrophotometric measurements have been done in the spectral range from 350 nm to 2000 nm. The transmittance of the prepared thin films is 92.4% and 88.4%. Determination of the optical constants such as refractive index, absorption coefficient, and dielectric constant in this wavelength range has been evaluated. Further, normal dispersion of the refractive index has been analyzed in terms of single oscillator model of free carrier absorption to estimate the dispersion and oscillation energy. The lattice dielectric constant and the ratio of free carrier concentration to free carrier effective mass have been determined. Moreover, photoluminescence measurements of the thin films in the spectral range from 350 nm to 900 nm have been presented. Electrical measurements for resistivity evaluation of the films have been done. An analysis in terms of order-disorder of the material has been presented to provide more consistency in the results.