Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013 (2013), Article ID 308258, 11 pages
http://dx.doi.org/10.1155/2013/308258
Research Article

Ellipsometric Characterization of Thin Films from Multicomponent Chalcogenide Glasses for Application in Modern Optical Devices

1Institute of Optical Materials and Technologies “Acad. J. Malinowski,” Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 109, 1113 Sofia, Bulgaria
2Geological Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 24, 1113 Sofia, Bulgaria
3Faculty of Physics, Sofia University “St. Kliment Ohridski,” 5 James Boucher Avenue, 1164 Sofia, Bulgaria

Received 4 March 2013; Revised 20 May 2013; Accepted 22 May 2013

Academic Editor: R. N. P. Choudhary

Copyright © 2013 R. Todorov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. V. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, chapter 4, North-Holland, Amsterdam, The Netherlands, 1977.
  2. L. Ward, “The accuracy of some mixed photometric and polarimetric functions in the determination of the optical constants of thin films,” Journal of Physics D, vol. 17, no. 9, pp. 1781–1790, 1984. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Vedam, “Spectroscopic ellipsometry: a historical overview,” Thin Solid Films, vol. 313-314, pp. 1–9, 1998. View at Google Scholar · View at Scopus
  4. D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films, vol. 455-456, pp. 3–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” Journal of Physics D, vol. 32, no. 9, pp. R45–R56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Physical Review B, vol. 27, no. 2, pp. 985–1009, 1983. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” Journal of Non-Crystalline Solids, vol. 330, no. 1–3, pp. 1–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. F. Bowden and J. A. Harrington, “Fabrication and characterization of chalcogenide glass for hollow Bragg fibers,” Applied Optics, vol. 48, no. 16, pp. 3050–3054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Márquez, J. M. González-Leal, A. M. Bernal-Oliva, T. Wagner, and R. Jiménez-Garay, “Preparation and optical dispersion and absorption of Ag-photodoped GexSb40-xS60 (x10, 20 and 30) chalcogenide glass thin films,” Journal of Physics D, vol. 40, no. 17, pp. 5351–5357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Terakado and K. Tanaka, “Photo-induced phenomena in GeO2-GeS2 glasses,” Japanese Journal of Applied Physics B, vol. 46, no. 12–16, pp. L265–L267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Petkov and B. Dinev, “Photo-induced changes in the optical properties of amorphous As–Ge–S thin films,” Journal of Materials Science, vol. 29, no. 2, pp. 468–472, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Tasseva, K. Petkov, D. Kozhuharova, and T. Iliev, “Light-induced changes in the physico-chemical and optical properties of thin Ge–S–Se–As films,” Journal of Optoelectronics and Advanced Materials, vol. 7, no. 3, pp. 1287–1292, 2005. View at Google Scholar · View at Scopus
  13. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Optics Express, vol. 18, no. 25, pp. 26744–26753, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Laser-deposited As2S3 chalcogenide films for waveguide applications,” Applied Surface Science, vol. 197-198, pp. 481–485, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. X. H. Zhang, L. Calvez, V. Seznec et al., “Infrared transmitting glasses and glass-ceramics,” Journal of Non-Crystalline Solids, vol. 352, no. 23-25, pp. 2411–2415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Optics Express, vol. 17, no. 25, pp. 22393–22400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Laniel, N. Hô, R. Vallée, and A. Villeneuve, “Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation,” Journal of the Optical Society of America B, vol. 22, no. 2, pp. 437–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, “Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching,” Optics Letters, vol. 29, no. 3, pp. 265–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Andriesh, “Chalcogenide glasses as multifunctional photonic MATERIALS,” Journal of Optoelectronics and Advanced Materials, vol. 7, no. 6, pp. 2931–2939, 2005. View at Google Scholar · View at Scopus
  20. T. Wágner and P. J. S. Ewen, “Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential application,” Journal of Non-Crystalline Solids, vol. 266–269, pp. 979–984, 2000. View at Google Scholar · View at Scopus
  21. G. Beadie, W. S. Rabinovich, J. Sanghera, and I. Aggarwal, “Fabrication of microlenses in bulk chalcogenide glass,” Optics Communications, vol. 152, no. 4–6, pp. 215–220, 1998. View at Google Scholar · View at Scopus
  22. T. Kawaguchi and S. Maruno, “Kinetic study of metallic silver photoinduced surface deposition phenomenon,” Japanese Journal of Applied Physics A, vol. 33, no. 6, pp. 3417–3418, 1994. View at Google Scholar · View at Scopus
  23. R. A. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films, vol. 455-456, pp. 248–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Franta, I. Ohlídal, M. Frumar, and J. Jedelský, “Optical characterization of chalcogenide thin films,” Applied Surface Science, vol. 175-176, pp. 555–561, 2001. View at Publisher · View at Google Scholar
  25. R. Todorov and K. Petkov, “Light induced changes in the optical properties of thin As–S–Ge(Bi, Tl) films,” Journal of Optoelectronics and Advanced Materials, vol. 3, no. 2, pp. 311–317, 2001. View at Google Scholar · View at Scopus
  26. R. Todorov, A. Paneva, and K. Petkov, “Optical characterization of thin chalcogenide films by multiple-angle-of-incidence ellipsometry,” Thin Solid Films, vol. 518, no. 12, pp. 3280–3288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Todorov, T. Iliev, and K. Petkov, “Light-induced changes in the optical properties of thin films of Ge–S–Bi(Tl, In) chalcogenides,” Journal of Non-Crystalline Solids, vol. 326-327, pp. 263–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. L. F. Santos, A. Ganjoo, H. Jain, and R. M. Almeida, “Optical and spectroscopic characterization of germanium selenide glass films,” Journal of Non-Crystalline Solids, vol. 355, no. 37–42, pp. 1984–1988, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. V. Sopinskyy, P. E. Shepeliavyi, A. V. Stronski, and E. F. Venger, “Ellipsometry and AFM study of post-deposition transformations in vacuum-evaporated As–S–Se films,” Journal of Optoelectronics and Advanced Materials, vol. 7, no. 5, pp. 2255–2266, 2005. View at Google Scholar · View at Scopus
  30. V. Pamukchieva and A. Szekeres, “Optical properties of GexSb20-xTe80 thin films and their changes by light illumination,” Optical Materials, vol. 30, no. 7, pp. 1088–1092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Ide, M. Suzuki, and M. Okada, “Spectroscopic ellipsometry studies on optical constants of Ge2Sb2Te5 used for phase change optical disks,” Japanese Journal of Applied Physics B, vol. 34, no. 4, pp. L529–L532, 1995. View at Google Scholar · View at Scopus
  32. M. Yaman, H. E. Kondakci, and M. Bayindir, “Large and dynamical tuning of a chalcogenide fabry-perot cavity mode by temperature modulation,” Optics Express, vol. 18, no. 3, pp. 3168–3173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Y. Kim, S. J. Kim, H. Lim et al., “Spectro-ehipsometry investigation of cascaded crystallization behavior of phase-change Ge–Sb–Te alloy,” Japanese Journal of Applied Physics B, vol. 40, no. 3, pp. 1575–1577, 2001. View at Google Scholar · View at Scopus
  34. S. H. Messaddeq, V. K. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Siu Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Physical Review B, vol. 63, no. 22, Article ID 224203, 5 pages, 2001. View at Google Scholar · View at Scopus
  35. Y. Murakami, T. Ogawa, M. Wakaki, and S. Kawabata, “In-situ ellipsometric observations of thickness change in the layers of Ag/a-As2S3 film system with progression of photodoping,” Japanese Journal of Applied Physics A, vol. 39, no. 2, pp. 509–510, 2000. View at Google Scholar · View at Scopus
  36. V. Pamukchieva, A. Szekeres, and D. Arsova, “Spectroscopic ellipsometry study of the effect of illumination and thermal annealing on the optical constants of thin Ge–As–S films,” Physica Scripta, vol. 83, no. 2, Article ID 025405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Ohlídal, D. Franta, M. Šiler et al., “Comparison of dispersion models in the optical characterization of As–S chalcogenide thin films,” Journal of Non-Crystalline Solids, vol. 352, no. 52–54, pp. 5633–5641, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Tasseva, R. Todorov, D. Tsankov, and K. Petkov, “Optical properties of multi-component arsenic-containing chalcogenide thin films,” Journal of Optoelectronics and Advanced Materials, vol. 9, no. 2, pp. 344–347, 2007. View at Google Scholar · View at Scopus
  39. K. Petkov, T. Iliev, R. Todorov, and D. Tzvetkov, “X-ray microanalysis and optical properties of thin As–S–Bi (Tl) films,” Vacuum, vol. 58, no. 2, pp. 321–326, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Tichý, H. Tichá, P. Nagels, and E. Sleeckx, “A review of the specific role of oxygen in irreversible photo- and thermally induced changes of the optical properties of thin film amorphous chalcogenides,” Optical Materials, vol. 4, no. 6, pp. 771–779, 1995. View at Google Scholar · View at Scopus
  41. C. K. Carniglia, “Ellipsometric calculations for nonabsorbing thin films with linear refractive-index gradients,” Journal of Optical Society of America A, vol. 7, no. 5, pp. 848–856, 1990. View at Publisher · View at Google Scholar
  42. D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Physical Review B, vol. 20, no. 8, pp. 3292–3302, 1979. View at Publisher · View at Google Scholar · View at Scopus
  43. G. E. Jellison Jr., “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films, vol. 313-314, pp. 33–39, 1998. View at Google Scholar · View at Scopus
  44. M. K. Smit and J. W. Verhoof, “Accuracy analysis in multiple angle of incidence ellipsometry,” Thin Solid Films, vol. 189, no. 2, pp. 193–203, 1990. View at Google Scholar · View at Scopus
  45. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” Journal of Physics E, vol. 16, no. 12, pp. 1214–1222, 1983. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Todorov, D. Tsankov, J. Pirov, and K. Petkov, “Structure and optical properties of thin As2S3-In2S3 films,” Journal of Physics D, vol. 44, no. 30, Article ID 305401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Petkov, G. Vassilev, R. Todorov, J. Tasseva, and V. Vassilev, “Optical properties and structure of thin films from the system GeSe2-Sb2Se3-AgI,” Journal of Non-Crystalline Solids, vol. 357, no. 14, pp. 2669–2674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Tanaka, “Optical properties and photo-induced changes in amorphous As–S films,” Thin Solid Films, vol. 66, no. 3, pp. 271–279, 1980. View at Google Scholar · View at Scopus
  49. M. I. Kozak, V. N. Zhikharev, V. Y. Loya, I. P. Studenyak, I. I. Shpak, and I. I. Turok, “An ellipsometric study of relaxation-induced changes in the optical characteristics and structural inhomogeneity of As2S3 glassy thin films,” Technical Physics Letters, vol. 32, no. 5, pp. 456–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Tasseva, R. Todorov, and K. Petkov, “Linear and non-linear optical properties of thin films from the system As–S–Se,” Journal of Optoelectronics and Advanced Materials, vol. 11, no. 9, pp. 1257–1260, 2009. View at Google Scholar · View at Scopus
  51. E. Vateva, D. Arsova, E. Skordeva, and V. Pamukchieva, “Irreversible and reversible changes in band gap and volume of chalcogenide films,” Journal of Non-Crystalline Solids, vol. 326-327, pp. 243–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Todorov, J. Tasseva, T. Babeva, and K. Petkov, “Multilayer As2Se3/GeS2 quarter wave structures for photonic applications,” Journal of Physics D, vol. 43, no. 50, Article ID 505103, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Abelès and M. L. Thèye, “Méthode de calcul des constantes optiques des couches minces absorbantes à partir de mesures de réflexion et de transmission,” Surface Science, vol. 5, no. 3, pp. 325–331, 1966. View at Google Scholar · View at Scopus
  54. I. Chambouleyron, S. D. Ventura, E. G. Birgin, and J. M. Martínez, “Optical constants and thickness determination of very thin amorphous semiconductor films,” Journal of Applied Physics, vol. 92, no. 6, pp. 3093–3102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Andrade, E. G. Birgin, I. Chambouleyron, J. M. Martinez, and S. D. Ventura, “Estimation of the thickness and the optical parameters of several stacked thin films using optimization,” Applied Optics, vol. 47, no. 28, pp. 5208–5220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. P. Martin, “Stability of As–S clusters,” The Journal of Chemical Physics, vol. 80, no. 1, pp. 170–175, 1984. View at Google Scholar · View at Scopus
  57. K. Petkov, R. Todorov, D. Kozhuharova, L. Tichy, E. Cernoskova, and P. J. S. Ewen, “Changes in the physicochemical and optical properties of chalcogenide thin films from the systems As–S and As–S–Tl,” Journal of Materials Science, vol. 39, no. 3, pp. 961–968, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. F. L. McCrackin and J. P. Colson, “Computational techniques for the use of the exact drude equations in reflection problems,” in Ellipsometry in the Measurement of Surfaces and Thin Films, E. Passaglia, R. R. Stromberg, and J. Kruger, Eds., National Bureau of Standards Miscellaneous Publication 256, pp. 61–82, National Bureau of Standards, Washigton, DC, USA, 1964. View at Google Scholar
  59. R. Swanepoel, “Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films,” Journal of Physics E, vol. 17, no. 10, pp. 896–903, 1984. View at Publisher · View at Google Scholar · View at Scopus
  60. O. S. Heavens, Optical Properties of Thin Solid Films, Butterworth Scientific, London, UK, 1955.
  61. J. P. Borgogno, B. Lazarides, and E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Applied Optics, vol. 21, no. 22, pp. 4020–4029, 1982. View at Google Scholar · View at Scopus
  62. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Science and Engineering R, vol. 69, no. 1–3, pp. 1–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Lalova and R. Todorov, “Optical properties of porous chalcogenide films for sensor application,” Journal of Physics: Conference Series, vol. 398, no. 1, Article ID 012023, 2012. View at Publisher · View at Google Scholar
  64. J. Tasseva, R. Todorov, T. Babeva, and K. Petkov, “Structural and optical characterization of Ag photo-doped thin As40S60-xSex films for non-linear applications,” Journal of Optics, vol. 12, no. 6, Article ID 065601, 2010. View at Publisher · View at Google Scholar · View at Scopus