Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013, Article ID 374371, 16 pages
http://dx.doi.org/10.1155/2013/374371
Research Article

Electronic Structure of Single-Wall Silicon Nanotubes and Silicon Nanoribbons: Helical Symmetry Treatment and Effect of Dimensionality

1Chemical Physics Division, Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska Dolina CH2, 84215 Bratislava, Slovakia
2Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska Dolina CH2, 84215 Bratislava, Slovakia
3Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 84536 Bratislava, Slovakia

Received 18 February 2013; Accepted 1 May 2013

Academic Editor: Jan Alexander Jung

Copyright © 2013 Pavol Baňacký et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Google Scholar · View at Scopus
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Namatsu, Y. Takahashi, M. Nagase, and K. Murase, “Fabrication of thickness-controlled silicon nanowires and their characteristics,” Journal of Vacuum Science and Technology B, vol. 13, no. 6, pp. 2166–2169, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ono, H. Saitoh, and M. Esashi, “Si nanowire growth with ultrahigh vacuum scanning tunneling microscopy,” Applied Physics Letters, vol. 70, no. 14, pp. 1852–1854, 1997. View at Google Scholar · View at Scopus
  5. E. Leobandung, L. Guo, Y. Wang, and S. Y. Chou, “Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperatures over 100 K,” Applied Physics Letters, vol. 67, no. 7, article 938, 3 pages, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. H. Tang, Y. F. Zheng, C. S. Lee, and S. T. Lee, “A simple route to annihilate defects in silicon nanowires,” Chemical Physics Letters, vol. 328, no. 4–6, pp. 346–349, 2000. View at Google Scholar · View at Scopus
  7. X. C. Wu, W. H. Song, K. Y. Wang et al., “Preparation and photoluminescence properties of amorphous silica nanowires,” Chemical Physics Letters, vol. 336, no. 1-2, pp. 53–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Y. Zhang, L. D. Zhang, G. W. Meng, G. H. Li, N. Y. Jin-Phillipp, and F. Phillipp, “Synthesis of ordered single crystal silicon nanowire arrays,” Advanced Materials, vol. 13, no. 16, pp. 1238–1241, 2001. View at Publisher · View at Google Scholar
  9. S. W. Schi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “A general synthetic route to III–V compound semiconductor nanowires,” Advanced Materials, vol. 13, no. 8, pp. 591–594, 2001. View at Publisher · View at Google Scholar
  10. J. Sha, J. Niu, X. Ma et al., “Silicon nanotubes,” Advanced Materials, vol. 14, no. 17, pp. 1219–1221, 2002. View at Publisher · View at Google Scholar
  11. S. Y. Jeong, J. Y. Kim, H. D. Yang et al., “Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy,” Advanced Materials, vol. 15, no. 14, pp. 1172–1176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. W. Chen, Y. H. Tang, L. Z. Pei, and C. Guo, “Self-assembled silicon nanotubes grown from silicon monoxide,” Advanced Materials, vol. 17, no. 5, pp. 564–567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. H. Tang, L. Z. Pei, Y. W. Chen, and C. Guo, “Self-assembled silicon nanotubes under supercritically hydrothermal conditions,” Physical Review Letters, vol. 95, no. 11, Article ID 116102, 4 pages, 2005. View at Publisher · View at Google Scholar
  14. M. de Crescenzi, P. Castrucci, M. Scarselli et al., “Experimental imaging of silicon nanotubes,” Applied Physics Letters, vol. 86, no. 23, Article ID 231901, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Castrucci, M. Scarselli, M. de Crescenzi et al., “Silicon nanotubes: synthesis and characterization,” Thin Solid Films, vol. 508, no. 1-2, pp. 226–230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Castrucci, M. Diociaiuti, C. M. Tank et al., “Si nanotubes and nanospheres with two-dimensional polycrystalline walls,” Nanoscale, vol. 4, no. 16, pp. 5195–5201, 2012. View at Publisher · View at Google Scholar
  17. A. Kara, C. Léandri, M. E. Dávila et al., “Physics of silicene stripes,” Journal of Superconductivity and Novel Magnetism, vol. 22, no. 3, pp. 259–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. de Padova, C. Quaresima, B. Olivieri, P. Perfetti, and G. Le Lay, “sp2-like hybridization of silicon valence orbitals in silicene nanoribbons,” Applied Physics Letters, vol. 98, no. 8, Article ID 081909, 3 pages, 2011. View at Publisher · View at Google Scholar
  19. P. Vogt, P. de Padova, C. Quaresima et al., “Silicene: compelling experimental evidence for graphenelike two-dimensional silicon,” Physical Review Letters,, vol. 108, no. 15, Article ID 155501, 5 pages, 2012. View at Publisher · View at Google Scholar
  20. K. Takeda and K. Shiraishi, “Theoretical possibility of stage corrugation in Si and Ge analogs of graphite,” Physical Review B, vol. 50, no. 20, pp. 14916–14922, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Cahangirov, M. Topsakal, E. Aktürk, H. Šahin, and S. Ciraci, “Two- and one-dimensional honeycomb structures of silicon and germanium,” Physical Review Letters, vol. 102, no. 23, Article ID 236804, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Hamada, S. I. Sawada, and A. Oshiyama, “New one-dimensional conductors: graphitic microtubules,” Physical Review Letters, vol. 68, no. 10, pp. 1579–1581, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. S. B. Fagan, R. J. Baierle, R. Mota, A. J. R. da Silva, and A. Fazzio, “Ab initio calculations for a hypothetical material: silicon nanotubes,” Physical Review B, vol. 61, no. 15, pp. 9994–9996, 2000. View at Google Scholar · View at Scopus
  24. G. G. Guzmán-Verri and L. C. L. Y. Voon, “Electronic structure of silicon-based nanostructures,” Physical Review B, vol. 76, no. 7, Article ID 075131, 10 pages, 2007. View at Publisher · View at Google Scholar
  25. G. G. Guzmán-Verri and L. C. L. Y. Voon, “Band structure of hydrogenated Si nanosheets and nanotubes,” Journal of Physics Condensed Matter, vol. 23, no. 14, Article ID 145502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Seifert, T. Köhler, H. M. Urbassek, E. Hernández, and T. Frauenheim, “Tubular structures of silicon,” Physical Review B, vol. 63, no. 19, Article ID 193409, 4 pages, 2001. View at Publisher · View at Google Scholar
  27. X. Yang and J. Ni, “Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes,” Physical Review B, vol. 72, no. 19, Article ID 195426, 5 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Durgun, S. Tongay, and S. Ciraci, “Silicon and III–V compound nanotubes: structural and electronic properties,” Physical Review B, vol. 72, no. 7, Article ID 075420, 10 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Q. Zhang, H. L. Lee, W. K. Li, and B. K. Teo, “Investigation of possible structures of silicon nanotubes via density-functional tight-binding molecular dynamics simulations and ab initio calculations,” Journal of Physical Chemistry B, vol. 109, no. 18, pp. 8605–8612, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Dumitricǎ, M. Hua, and B. I. Yakobson, “Endohedral silicon nanotubes as thinnest silicide wires,” Physical Review B, vol. 70, no. 24, Article ID 241303, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Zhang, Y. H. Kan, Q. J. Zang, Z. M. Su, and R. S. Wang, “Why silicon nanotubes stably exist in armchair structure?” Chemical Physics Letters, vol. 379, no. 1-2, pp. 81–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Menon and E. Richter, “Are quasi-one dimensional structures of Si stable?” Physical Review Letters, vol. 83, no. 4, pp. 792–795, 1999. View at Google Scholar · View at Scopus
  33. R. Q. Zhang, A. T. Lee, C. K. Law, W. K. Li, and B. K. Teo, “Silicon nanotubes: why not?” Chemical Physics Letters, vol. 364, no. 3-4, pp. 251–258, 2002. View at Publisher · View at Google Scholar
  34. J. Bai, X. C. Zeng, H. Tanaka, and J. Y. Zeng, “Metallic single-walled silicon nanotubes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2664–2668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, Calif, USA, 1996.
  36. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK, 1998.
  37. X. Yang, Y. Ding, and J. Ni, “Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties,” Physical Review B, vol. 77, no. 4, Article ID 041402, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. C. T. White, D. H. Robertson, and J. W. Mintmire, “Helical and rotational symmetries of nanoscale graphitic tubules,” Physical Review B, vol. 47, no. 9, pp. 5485–5488, 1993. View at Publisher · View at Google Scholar · View at Scopus
  39. C. T. White and J. W. Mintmire, “Fundamental properties of single-wall carbon nanotubes,” Journal of Physical Chemistry B, vol. 109, no. 1, pp. 52–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. P. N. D'Yachkov and D. V. Makaev, “Account of helical and rotational symmetries in the linear augmented cylindrical wave method for calculating the electronic structure of nanotubes: towards the ab initio determination of the band structure of a (100, 99) tubule,” Physical Review B, vol. 76, no. 19, Article ID 195411, 15 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Noel, P. D'Arco, R. Demichelis, C. M. Zicovich-Wilson, and R. Dovesi, “On the use of symmetry in the ab initio quantum mechanical simulation of nanotubes and related materials,” Journal of Computational Chemistry, vol. 31, no. 4, pp. 855–862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Baňacký, J. Noga, and V. Szöcs, “Toward possibility of high-temperature bipolaronic superconductivity in boron-tubular polymorph: theoretical aspects of transition into anti-adiabatic state,” Journal of Physics and Chemistry of Solids, vol. 73, no. 8, pp. 1044–1054, 2012. View at Publisher · View at Google Scholar
  43. J. Noga, P. Baňacký, S. Biskupič et al., “Approaching bulk limit for three-dimensional solids via the cyclic cluster approximation: semiempirical INDO study,” Journal of Computational Chemistry, vol. 20, no. 2, pp. 253–261, 1999. View at Google Scholar · View at Scopus
  44. J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York, NY, USA, 1970.
  45. R. Boča, “Inclusion of relativistic effects into ZDO methods. I. A quasi-relativistic CNDO/1,” International Journal of Quantum Chemistry, vol. 31, no. 6, pp. 941–950, 1987. View at Publisher · View at Google Scholar
  46. R. Boča, “Inclusion of relativistic effects into ZDO methods. III. A quasi-relativistic INDO/1 version,” International Journal of Quantum Chemistry, vol. 34, no. 4, pp. 385–399, 1988. View at Publisher · View at Google Scholar
  47. A. Zajac, P. Pelikán, J. Noga, P. Baňacky, S. Biskupič, and M. Svrček, “Cyclic cluster approach to three-dimensional solids: quasi-Rrelativistic INDO treatment,” Journal of Physical Chemistry B, vol. 104, no. 8, pp. 1708–1714, 2000. View at Google Scholar · View at Scopus
  48. A. Zajac, P. Pelikán, J. Minár et al., “The structure and properties of graphite monofluoride using the three-dimensional cyclic cluster approach,” Journal of Solid State Chemistry, vol. 150, no. 2, pp. 286–293, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Pelikán, M. Kosuth, S. Biskupic et al., “Electron structure of polysilanes. Are these polymers one-dimensional systems?” International Journal of Quantum Chemistry, vol. 84, no. 2, pp. 157–168, 2001. View at Publisher · View at Google Scholar
  50. J. M. An and W. E. Pickett, “Superconductivity of MgB2: covalent bonds driven metallic,” Physical Review Letters, vol. 86, no. 19, pp. 4366–4369, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Yildirim, O. Gülseren, J. W. Lynn et al., “Giant anharmonicity and nonlinear electron-phonon coupling in MgB2: a combined first-principles calculation and neutron scattering study,” Physical Review Letters, vol. 87, no. 3, Article ID 037001, 4 pages, 2001. View at Google Scholar · View at Scopus
  52. P. Baňacký, “Nonadiabatic sudden increase of the cooperative kinetic effect at lattice energy stabilization—microscopic mechanism of superconducting state transition: model study of MgB2,” International Journal of Quantum Chemistry, vol. 101, no. 2, pp. 131–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Boeri, E. Cappelluti, and L. Pietronero, “Small Fermi energy, zero-point fluctuations, and nonadiabaticity in MgB2,” Physical Review B, vol. 71, no. 1, Article ID 12501, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Cappelluti and L. Pietronero, “Electron-phonon interaction and breakdown of the adiabatic principle in fullerides and MgB2,” Journal of Physics and Chemistry of Solids, vol. 67, no. 9-10, pp. 1941–1947, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Baňacký, “Ab initio theory of complex electronic ground state of superconductors: I. Nonadiabatic modification of the Born-Oppenheimer approximation,” Journal of Physics and Chemistry of Solids, vol. 69, no. 11, pp. 2728–2747, 2008. View at Publisher · View at Google Scholar
  56. P. Baňacký, “Ab initio theory of complex electronic ground state of superconductors: II. Antiadiabatic state-ground state of superconductors,” Journal of Physics and Chemistry of Solids, vol. 69, no. 11, pp. 2696–2712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Baňacký, “Antiadiabatic theory of superconducting state transition: phonons and strong electron correlations—the old physics and new aspects,” Advances in Condensed Matter Physics, vol. 2010, Article ID 752943, 36 pages, 2010. View at Publisher · View at Google Scholar