Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013, Article ID 465498, 5 pages
http://dx.doi.org/10.1155/2013/465498
Research Article

Simulation and Analysis of GaN Wafer Bowing on Sapphire Substrate

1The Center of Coordination and Support of State Administration of Science, Technology and Industry for National Defence, Beijing 100081, China
2Advanced Technology Generalization Institute of CNGC, Beijing 100089, China
3School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
4The 41st Institute of China Electronics Technology Group Corporation, Qingdao 266555, China

Received 17 June 2013; Accepted 14 August 2013

Academic Editor: Jianhua Hao

Copyright © 2013 Wang Bin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Xue, J. Zhang, Y. Hou, H. Zhou, J. Zhang, and Y. Hao, “Pulsed metal organic chemical vapor deposition of nearly latticed-matched InAlN/GaN/InAlN/GaN double-channel high electron mobility transistors,” Applied Physics Letters, vol. 100, no. 1, Article ID 013507, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Lianqiao, C. Zunmiao, Z. Jianhua, and A. G. Li, “Transport phenomena in a novel large MOCVD reactor for epitaxial growth of GaN thin films,” IEEE Transactions on Semiconductor Manufacturing, vol. 25, no. 1, pp. 16–18, 2012. View at Google Scholar
  3. Z.-Q. Cheng, S. Hu, W.-J. Zhou, and J. Liu, “Effect of composited-layer AlyGa1-yN on performances of AlGaN/GaN HEMT with unintentionally doping barrier AlxGa 1-xN,” Microwave and Optical Technology Letters, vol. 53, no. 6, pp. 1206–1209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Z.-Q. Cheng, S. Hu, J. Liu, and Q.-J. Zhang, “Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network,” Chinese Physics B, vol. 20, no. 3, Article ID 036106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. O. Li, C. W. Tang, K. J. Chen, and K. M. Lau, “Metamorphic InAlAs/InGaAs HEMTs on GaAs substrates grown by MOCVD,” Electron Device Letters, vol. 29, no. 6, pp. 561–564, 2008. View at Google Scholar
  6. M. H. Lo, P. M. Tu, C. H. Wang et al., “High efficiency light emitting diode with anisotropically etched GaN-sapphire interface,” Applied Physics Letters, vol. 95, no. 4, Article ID 041109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. J. Lee, J. M. Hwang, T. C. Hsu et al., “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technology Letters, vol. 18, no. 10, pp. 1152–1154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Tao, Z. Zhang, L. Liu et al., “Surface morphology and composition studies in InGaN/GaN film grown by MOCVD,” Journal of Semiconductors, vol. 32, no. 8, Article ID 083002, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Wang, J. Li, S. Li, H. Chen, D. Liu, and J. Kang, “X-ray reflectivity and atomic force microscopy studies of MOCVD grown AlxGa1-xN/GaN superlattice structures,” Journal of Semiconductors, vol. 32, no. 4, Article ID 043006, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Liu, H. Chen, and S. Fu, “CFD simulation of flow patterns in GaN-MOCVD reactor,” Chinese Journal of Semiconductors, vol. 25, no. 12, pp. 1639–1646, 2004. View at Google Scholar · View at Scopus
  11. Z. M. Li, S. R. Xu, J. C. Zhang et al., “Finite Element Analysis of the Temperature Field in a Vertical MOCVD Reactor by Induction Heating,” Journal of Semiconductors, vol. 33, no. 11, Article ID 113004, 5 pages, 2009. View at Google Scholar
  12. Z. M. Li, Y. Hao, J. C. Zhang et al., “Thermal transportation simulation of a susceptor structure with ring groove for the vertical MOCVD reactor,” Journal of Crystal Growth, vol. 311, no. 23-24, pp. 4679–4684, 2009. View at Google Scholar
  13. H. Ying-lu, L. Pei-xian, L. Zhi-ming et al., “Simulation and analysis of temperature modulate curve in MOCVD with the chipped infrared heating system,” Electronic Science and Technology, vol. 25, no. 1, pp. 108–111, 2012. View at Google Scholar
  14. S.-Q. Zhong, X.-M. Ren, Q. Wang et al., “Numerical simulation of flow and temperature field in MOCVD reactor,” Journal of Synthetic Crystals, vol. 37, no. 6, pp. 1342–1348, 2008. View at Google Scholar · View at Scopus
  15. S. R. Xu, Y. Hao, J. C. Zhang et al., “Yellow luminescence of polar and nonpolar gan nanowires on r-plane sapphire by metal organic chemical vapor deposition,” Nano Letters, vol. 13, pp. 3654–3657, 2013. View at Google Scholar
  16. Q. Xu, R. Zuo, and H. Zhang, “Design and simulation of reverse-flow showerhead MOCVD reactors,” Journal of Synthetic Crystals, vol. 34, no. 6, pp. 1059–1064, 2005. View at Google Scholar · View at Scopus
  17. G.-B. Wang, R. Zuo, Q. Xu, H. Li, H.-Q. Yu, and J.-S. Chen, “Design and numerical simulation of MOCVD reactor with tangential inlets,” Journal of Synthetic Crystals, vol. 39, no. 1, pp. 267–271, 2010. View at Google Scholar