Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013 (2013), Article ID 675410, 8 pages
http://dx.doi.org/10.1155/2013/675410
Research Article

Electronic Structure Calculations of A2Ti2O7 (A = Dy, Ho, and Y)

School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China

Received 8 July 2013; Accepted 30 July 2013

Academic Editor: Liang Qiao

Copyright © 2013 H. Y. Xiao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Wuensch, K. W. Eberman, C. Heremans et al., “Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature,” Solid State Ionics, vol. 129, no. 1, pp. 111–133, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. R. C. Ewing, “Materials science: displaced by radiation,” Nature, vol. 445, no. 7124, pp. 161–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. W. J. Weber and R. C. Ewing, “Plutonium immobilization and radiation effects,” Science, vol. 289, no. 5487, pp. 2051–2052, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. Ewing, W. J. Weber, and J. Lian, “Nuclear waste disposal—pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides,” Journal of Applied Physics, vol. 95, no. 11 I, pp. 5949–5971, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. R. Lumpkin, K. P. Hart, P. J. McGlinn, T. E. Payne, R. Giere, and C. T. Williams, “Retention of actinides in natural pyrochlores and zirconolites,” Radiochimica Acta, vol. 66-67, pp. 469–474, 1994. View at Google Scholar
  6. A. Meldrum, C. W. White, V. Keppens, and L. A. Boatner, “Irradiation-induced amorphization of Cd2Nb2O7 pyrochlore,” Physical Review B, vol. 63, no. 10, Article ID 104109, pp. 1041091–10410911, 2001. View at Google Scholar · View at Scopus
  7. J. Lian, J. Chen, L. M. Wang et al., “Radiation-induced amorphization of rare-earth titanate pyrochlores,” Physical Review B, vol. 68, no. 13, Article ID 134107, pp. 1341071–1341079, 2003. View at Google Scholar · View at Scopus
  8. J. Chen, J. Lian, L. M. Wang, R. C. Ewing, R. G. Wang, and W. Pan, “X-ray photoelectron spectroscopy study of disordering in Gd2(Ti1-xZrx)2O7 pyrochlores,” Physical Review Letters, vol. 88, Article ID 105901, 4 pages, 2002. View at Publisher · View at Google Scholar
  9. H. Y. Xiao, X. T. Zu, F. Gao, and W. J. Weber, “First-principles study of energetic and electronic properties of A2Ti2O7 (A=Sm, Gd, Er) pyrochlore,” Journal of Applied Physics, vol. 104, Article ID 073503, 6 pages, 2008. View at Publisher · View at Google Scholar
  10. Z. L. Zhang, H. Y. Xiao, X. T. Zu, F. Gao, and W. J. Weber, “First-principles calculation of structural and energetic properties for A2Ti2O7 (A=Lu, Er, Y, Gd, Sm, Nd, La),” Journal of Materials Research, vol. 24, no. 4, pp. 1335–1341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Y. Xiao, L. M. Wang, X. T. Zu, J. Lian, and R. C. Ewing, “Theoretical investigation of structural, energetic and electronic properties of titanate pyrochlores,” Journal of Physics, vol. 19, Article ID 346203, 2007. View at Publisher · View at Google Scholar
  12. H. Y. Xiao, F. Gao, and W. J. Weber, “Ab initio investigation of phase stability of Y2Ti2O7 and Y2Zr2O7 under high pressurePhysical Review B,” vol. 80, Article ID 212102, 4 pages, 2009. View at Google Scholar
  13. Z. J. Chen, H. Y. Xiao, X. T. Zu et al., “Structural and bonding properties of stannate pyrochlores: a density functional theory investigation,” Computational Materials Science, vol. 42, no. 4, pp. 653–658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Li, H. Y. Xiao, X. T. Zu et al., “First-principles study of electronic properties of La2Hf2O7 and Gd2Hf2O7,” Journal of Applied Physics, vol. 102, Article ID 063704, 2007. View at Publisher · View at Google Scholar
  15. H. Y. Xiao, F. X. Zhang, F. Gao, M. Lang, R. C. Ewing, and W. J. Weber, “Zirconate pyrochlores under high pressure,” Physical Chemistry Chemical Physics, vol. 12, no. 39, pp. 12472–12477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Y. Xiao and W. J. Weber, “Pressure induced structural transformation in Gd2Ti2O7 and Gd2Zr2O7,” Journal of Physics, vol. 23, Article ID 35501, 2011. View at Publisher · View at Google Scholar
  17. J. M. Pruneda and E. Artacho, “First-principles study of structural, elastic, and bonding properties of pyrochlores,” Physical Review B, vol. 72, Article ID 085107, 8 pages, 2005. View at Publisher · View at Google Scholar
  18. K. E. Sickafus, L. Minervini, R. W. Grimes et al., “Radiation tolerance of complex oxides,” Science, vol. 289, no. 5480, pp. 748–751, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Terki, H. Feraoun, G. Bertrand, and H. Aourag, “Full potential linearized augmented plane wave investigations of structural and electronic properties of pyrochlore systems,” Journal of Applied Physics, vol. 96, no. 11, pp. 6482–6487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Chartier, C. Meis, W. J. Weber, and L. R. Corrales, “Theoretical study of disorder in Ti-substituted La2Zr2O7,” Physical Review B, vol. 65, Article ID 134116, 11 pages, 2002. View at Publisher · View at Google Scholar
  21. R. E. Williford, W. J. Weber, R. Devanathan, and J. D. Gale, “Effects of cation disorder on oxygen vacancy migration in Gd2Ti2O7,” Journal of Electroceramics, vol. 3, no. 4, pp. 409–424, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. X. J. Wang, H. Y. Xiao, X. T. Zu, Y. Zhang, and W. J. Weber, “Ab initio molecular dynamics simulations of ion–solid interactions in Gd2Zr2O7 and Gd2Ti2O7,” Journal of Materials Chemistry C, vol. 1, p. 1665, 2013. View at Publisher · View at Google Scholar
  23. W. R. Panero, L. Stixrude, and R. C. Ewing, “First-principles calculation of defect-formation energies in the Y2(Ti,Sn,Zr)2O7 pyrochlore,” Physical Review B, vol. 70, Article ID 054110, 11 pages, 2004. View at Publisher · View at Google Scholar
  24. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, vol. 59, no. 3, pp. 1758–1775, 1999. View at Google Scholar · View at Scopus
  25. J. P. Perdew, J. A. Chevary, S. H. Vosko et al., “Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, vol. 46, no. 11, pp. 6671–6687, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. White and D. M. Bird, “Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations,” Physical Review B, vol. 50, no. 7, pp. 4954–4957, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and K. W. Godfrey, “Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7,” Physical Review Letters, vol. 79, no. 13, pp. 2554–2557, 1997. View at Google Scholar · View at Scopus
  28. A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, “Zero-point entropy in ‘spin ice’,” Nature, vol. 399, no. 6734, pp. 333–335, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study,” Physical Review B, vol. 57, no. 3, pp. 1505–1509, 1998. View at Google Scholar · View at Scopus
  30. V. V. Nemoshkalenko, S. V. Borisenko, V. N. Uvarov et al., “Electronic structure of the R2Ti2O7 (R=Sm-Er, Yb, Lu) oxides,” Physical Review B, vol. 63, no. 7, Article ID 075106, pp. 0751061–0751068, 2001. View at Google Scholar · View at Scopus
  31. A. K. Pandit, T. H. Ansari, R. A. Singh, and B. M. Wanklyn, “Electrical conduction in Dy2Ti2O7 single crystal,” Materials Letters, vol. 11, no. 1-2, pp. 52–58, 1991. View at Google Scholar · View at Scopus
  32. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method,” Journal of Physics Condensed Matter, vol. 9, no. 4, pp. 767–808, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. S. T. Bramwell and M. J. P. Gingras, “Spin ice state in frustrated magnetic pyrochlore materials,” Science, vol. 294, no. 5546, pp. 1495–1501, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Jiang, J. R. Smith, and G. Robert Odette, “Prediction of structural, electronic and elastic properties of Y2Ti2O7 and Y2TiO5,” Acta Materialia, vol. 58, no. 5, pp. 1536–1543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. H. M. Naguib and R. Kelly, “Criteria for bombardment-induced structural changes in non-metallic solids,” Radiation Effects, vol. 25, no. 1, pp. 1–12, 1975. View at Publisher · View at Google Scholar
  36. K. Trachenko, “Understanding resistance to amorphization by radiation damage,” Journal of Physics Condensed Matter, vol. 16, no. 49, pp. R1491–R1515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Trachenko, J. M. Pruneda, E. Artacho, and M. T. Dove, “How the nature of the chemical bond governs resistance to amorphization by radiation damage,” Physical Review B, vol. 71, no. 18, Article ID 184104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. C. Ewing, W. J. Weber, and J. Lian, “Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides,” Journal of Applied Physics, vol. 95, no. 11 I, pp. 5949–5971, 2004. View at Publisher · View at Google Scholar · View at Scopus