Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013, Article ID 858406, 9 pages
http://dx.doi.org/10.1155/2013/858406
Research Article

Dielectric Properties of Φ(BZT-BCT)-(1−Φ) Epoxy Composites with 0-3 Connectivity

Department of Physics, National Institute of Technology, Rourkela 769008, India

Received 30 May 2013; Revised 11 September 2013; Accepted 28 September 2013

Academic Editor: Mohindar S. Seehra

Copyright © 2013 P. Mishra and P. Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Soares, A. M. R. Senos, and P. Q. Mantas, “Phase coexistence region and dielectric properties of PZT ceramics,” Journal of the European Ceramic Society, vol. 20, no. 3, pp. 321–334, 2000. View at Google Scholar · View at Scopus
  2. P. Kumar, S. Sharma, O. P. Thakur, C. Prakash, and T. C. Goel, “Dielectric, piezoelectric and pyroelectric properties of PMN-PT (68:32) system,” Ceramics International, vol. 30, no. 4, pp. 585–589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. B. K. Gan and K. Yao, “Structure and enhanced properties of perovskite ferroelectric PNN-PZN-PMN-PZ-PT ceramics by Ni and Mg doping,” Ceramics International, vol. 35, no. 5, pp. 2061–2067, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Roth, E. Dul'In, E. Mojaev, and M. Tseitlin, “Characterization of lead-based relaxor ferroelectric crystals by acoustic emission,” Optical Materials, vol. 34, no. 2, pp. 381–385, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Zhou, Y. Tang, F. Wang et al., “Improved dielectric and electrical insulating properties in Pb(Mg1/3Nb2/3)0.62Ti0.38O3 based multilayer ferroelectric thin films,” Thin Solid Films, vol. 522, pp. 457–462, 2012. View at Google Scholar
  6. R. Zuo and C. Ye, “Structures and piezoelectric properties of (NaKLi)1-x(BiNaBa)xNb1-xTixO3 lead-free ceramics,” Applied Physics Letters, vol. 91, no. 6, Article ID 062916, pp. 1–3, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Kurihara and M. Kondo, “High-strain piezoelectric ceramics and applications to actuators,” Ceramics International, vol. 34, no. 4, pp. 695–699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Wanga, S. W. Or, Q. Yuea et al., “Ternary piezoelectric single-crystal PIMNT based 2-2 composite for ultrasonic transducer applications,” Sensors and Actuators A, vol. 196, pp. 70–77, 2013. View at Publisher · View at Google Scholar
  9. I. Payo and J. M. Hale, “Sensitivity analysis of piezoelectric paint sensors made up of PZT ceramic powder and water-based acrylic polymer,” Sensors and Actuators A, vol. 168, no. 1, pp. 77–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. H. Choy, W. K. Li, H. K. Li, K. H. Lam, and H. L. W. Chan, “Study of BNKLBT-1.5 lead-free ceramic/epoxy 1-3 composites,” Journal of Applied Physics, vol. 102, no. 11, Article ID 114111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Liu and X. Ren, “Large piezoelectric effect in pb-free ceramics,” Physical Review Letters, vol. 103, Article ID 257602, pp. 1–4, 2009. View at Publisher · View at Google Scholar
  12. D. Zhou, K. H. Lama, Y. Chena et al., “Lead-free piezoelectric single crystal based 1-3 composites for ultrasonic transducer applications,” Sensors and Actuators A, vol. 182, pp. 95–100, 2012. View at Google Scholar
  13. K. H. Lam, H. F. Ji, F. Zheng, W. Ren, Q. Zhou, and K. K. Shung, “Development of lead-free single-element ultrahigh frequency (170-320 MHz) ultrasonic transducers,” Ultrasonics, vol. 53, pp. 1033–1038, 2013. View at Google Scholar
  14. B. Jadidian, N. Hagh, A. Winder, and A. Safari, “25 MHz ultrasonic transducers with lead- free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 2, pp. 368–378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. George and M. T. Sebastian, “Three-phase polymer-ceramic-metal composite for embedded capacitor applications,” Composites Science and Technology, vol. 69, no. 7-8, pp. 1298–1302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Aureli, C. Prince, M. Porfiri, and S. D. Peterson, “Energy harvesting from base excitation of ionic polymer metal composites in fluid environments,” Smart Materials and Structures, vol. 19, no. 1, Article ID 015003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K.-C. Cheng, C.-M. Lin, S.-F. Wang, S.-T. Lin, and C.-F. Yang, “Dielectric properties of epoxy resin-barium titanate composites at high frequency,” Materials Letters, vol. 61, no. 3, pp. 757–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Hu, J. Juuti, H. Jantunen, and T. Vilkman, “Dielectric properties of BST/polymer composite,” Journal of the European Ceramic Society, vol. 27, no. 13–15, pp. 3997–4001, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D.-Y. Wang and H. L.-W. Chan, “A dual frequency ultrasonic transducer based on BNBT-6/epoxy 1-3 composite,” Materials Science and Engineering B, vol. 99, no. 1–3, pp. 147–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Zhen, J.-F. Li, and K. Wang, “Fabrication and electrical properties of fine-scale 1-3 piezoceramic/epoxy composites using (K,Na)NbO3-based lead-free ceramics,” Ferroelectrics, vol. 358, no. 1, pp. 161–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Zhang and M. S. Wu, “Connectivity and shape effects on the effective properties of piezoelectric-polymeric composites,” International Journal of Engineering Science, vol. 48, no. 1, pp. 37–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. T. Sebastian and H. Jantunen, “Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review,” International Journal of Applied Ceramic Technology, vol. 7, no. 4, pp. 415–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. T. Le, N. B. Do, D. U. Kim, I. Hong, I.-W. Kim, and J. S. Lee, “Preparation and characterization of lead-free (K0.47Na0.51Li0.02)(Nb0.8Ta0.2)O3 piezoceramic/epoxy composites with 0-3 connectivity,” Ceramics International, vol. 38, no. 1, pp. S259–S262, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. J. Choi, M.-J. Yoo, H.-W. Kang, H.-G. Lee, S. H. Han, and S. Nahm, “Dielectric and piezoelectric properties of ceramic-polymer composites with 0-3 connectivity type,” Journal of Electroceramics, vol. 30, no. 1-2, pp. 30–35, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. C. R. Bowen and V. Y. Topolov, “Piezoelectric sensitivity of PbTiO3-based ceramic/polymer composites with 0-3 and 3-3 connectivity,” Acta Materialia, vol. 51, no. 17, pp. 4965–4976, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. L. A. Ramajo, A. A. Cristóbal, P. M. Botta, J. M. Porto López, M. M. Reboredo, and M. S. Castro, “Dielectric and magnetic response of Fe3O4/epoxy composites,” Composites A, vol. 40, no. 4, pp. 388–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Mishra, Sonia, and P. Kumar, “Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT-BCT 50/50 ceramics,” Journal of Alloys and Compounds, vol. 545, pp. 210–215, 2012. View at Google Scholar
  28. E. Wu, “POWD, an interactive powder diffraction data interpretation and indexing program ver. 2. 1,” Tech. Rep., School of Physical Science, Finder’s University of South Australia, Bedford Park, Australia.
  29. G. K. Williamson and W. H. Hall, “X-ray line broadening from filed Aluminium & wolfram,” Acta Metallurgica, vol. 1, no. 1, pp. 22–31, 1953. View at Google Scholar · View at Scopus
  30. B. Hilczer, J. Kulek, M. Polomska, M. Kosec, B. Malic, and L. Kepinski, “Dielectric relaxation in K0.5Na0.5NbO3-PVDF composites,” Ferroelectrics, vol. 338, pp. 159–170, 2006. View at Google Scholar
  31. C. V. Chanmal and J. P. Jog, “Dielectric relaxations in PVDF/BaTiO3 nanocomposites,” Express Polymer Letters, vol. 2, no. 4, pp. 294–301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Basavaraja, Y. M. Choi, H. T. Park et al., “Preparation, characterization and low frequency a.c. conduction of polypyrrole-lead titanate composites,” Bulletin of the Korean Chemical Society, vol. 28, no. 7, pp. 1104–1108, 2007. View at Google Scholar · View at Scopus
  33. R. Gregorio Jr. and E. M. Ueno, “Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF),” Journal of Materials Science, vol. 34, no. 18, pp. 4489–4500, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Osińska, A. Lisińska-Czekaj, H. Bernard, J. Dzik, M. Adamczyk, and D. Czekaj, “Dielectric properties of bismuth ferrite—bismuth titanate ceramic composite,” Archives of Metallurgy and Materials, vol. 56, no. 4, pp. 1093–1104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. V. Goncharenko, V. Z. Lozovski, and E. F. Venger, “Lichtenecker's equation: applicability and limitations,” Optics Communications, vol. 174, no. 1–4, pp. 19–32, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Thomas, K. T. Varughese, K. Dwarakanath, and K. B. R. Varma, “Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 composites,” Composites Science and Technology, vol. 70, no. 3, pp. 539–545, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Dinulović and B. Rašuo, “Dielectric modeling of multiphase composites,” Composite Structures, vol. 93, no. 12, pp. 3209–3215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Zewdie, “Effective medium theory of the mechanical, dielectric and piezoelectric properties of ferroelectric ceramic-polymer composite,” Bulletin of the Chemical Society of Ethiopia, vol. 12, no. 2, pp. 159–171, 1998. View at Google Scholar · View at Scopus
  39. L. Ramajo, M. Reboredo, and M. Castro, “Dielectric response and relaxation phenomena in composites of epoxy resin with BaTiO3 particles,” Composites A, vol. 36, no. 9, pp. 1267–1274, 2005. View at Publisher · View at Google Scholar · View at Scopus