Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2014, Article ID 301095, 6 pages
http://dx.doi.org/10.1155/2014/301095
Research Article

A Contamination Sensor Based on an Array of Microfibers with Nanoscale-Structured Film

Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China

Received 27 February 2014; Accepted 5 June 2014; Published 1 July 2014

Academic Editor: Wanguo Zheng

Copyright © 2014 Guorui Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. A. Fersman and L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Soviet Journal of Optical Technology, vol. 37, pp. 627–629, 1971. View at Google Scholar
  2. G. R. Wirtenson, “High fluence effects on optics in the Argus and shiva laser chains,” Optical Engineering, vol. 18, no. 6, p. 186574, 1979. View at Google Scholar · View at Scopus
  3. B. E. Newnam, “Optical materials for high power lasers: recent achievements,” Laser Focus with Fiberoptic Technology, vol. 18, no. 2, pp. 53–56, 1982. View at Google Scholar · View at Scopus
  4. F. Gu, J. Yang, B. Bian, and A. He, “A model for aerosol mass concentration using an optical particle counterm,” Chinese Optics Letters, vol. 6, no. 3, pp. 214–217, 2008. View at Google Scholar · View at Scopus
  5. H. Campanella, E. Martincic, P. Nouet, A. Uranga, and J. Esteve, “Analytical and finite-element modeling of localized-mass sensitivity of thin-film bulk acoustic-wave resonators (FBAR),” IEEE Sensors Journal, vol. 9, no. 8, pp. 892–901, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Optics Express, vol. 12, no. 6, pp. 1025–1035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. F. X. Gu, H. P. Zeng, L. M. Tong, and S. I. Zhuang, “Metal single-nanowire plasmonic sensors,” Optics Letters, vol. 38, no. 11, pp. 1826–1828, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Optics Communications, vol. 282, no. 18, pp. 3817–3819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. F. X. Gu, X. K. Yin, H. K. Yu, P. W. Wang, and L. M. Tong, “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Optics Express, vol. 17, no. 13, pp. 11230–11235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Letters, vol. 12, no. 6, pp. 3145–3150, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Applied Physics Letters, vol. 102, no. 20, Article ID 201110, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Gu, H. Yu, W. Fang, and L. Tong, “Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping,” Optics Express, vol. 20, no. 8, pp. 8667–8674, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire elecctrically driven lasers,” Nature, vol. 421, no. 6920, pp. 241–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Dupuis, J. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Optics Express, vol. 17, no. 10, pp. 8012–8028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Tong, R. R. Gattass, J. B. Ashcom et al., “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, vol. 426, no. 1825, pp. 816–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab on a Chip, vol. 7, no. 9, pp. 1171–1175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Benetti, D. Cannatà, F. Di Pietrantonio, V. Foglietti, and E. Verona, “Microbalance chemical sensor based on thin-film bulk acoustic wave resonators,” Applied Physics Letters, vol. 87, no. 17, Article ID 173504, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Applied Optics, vol. 38, no. 33, pp. 6845–6848, 1999. View at Publisher · View at Google Scholar · View at Scopus