Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2014, Article ID 735878, 6 pages
http://dx.doi.org/10.1155/2014/735878
Research Article

Structural, Optical, and Compactness Characteristics of Nanocrystalline Synthesized through an Autoigniting Combustion Method

1Department of Physics, St. Aloysius College, Edathua, Kerala 689573, India
2Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College, Thiruvananthapuram, Kerala 695 015, India
3Department of Physics, St. John's College, Anchal, Kollam District, Kerala 691306, India

Received 31 May 2013; Revised 5 October 2013; Accepted 5 October 2013; Published 9 January 2014

Academic Editor: R. N. P. Choudhary

Copyright © 2014 K. C. Mathai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Cummings and S. H. Simonsen, “The crystal structure of calcium niobate (CaNb2O6),” American Mineralogist, vol. 55, no. 1-2, pp. 90–97, 1970. View at Google Scholar · View at Scopus
  2. R. C. Pullar, “The synthesis, properties, and applications of columbite niobates (M2+Nb2O6): a critical review,” Journal of the American Ceramic Society, vol. 92, p. 564, 2009. View at Google Scholar
  3. I. V. Kityk, M. Makowska-Janusik, M. D. Fontana, M. Aillerie, and F. Abdi, “Band structure treatment of the influence of nonstoichiometric defects on optical properties in LiNbO3,” Journal of Applied Physics, vol. 90, no. 11, pp. 5542–5549, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. H.-Z. An, C. Wang, T.-M. Wang, and W.-C. Hao, “Photocatalytic activity of M(M = Mg, Ca, Sr, Ba, Ni)Nb2O6,” Journal of Inorganic Materials, vol. 22, no. 5, pp. 922–926, 2007. View at Google Scholar · View at Scopus
  5. H. G. Kim, D. W. Hwang, S. W. Bae, J. Kim, V. R. Reddy, and K. H. Lee, “Synthesis and chacacterization of ANb2O6 (A = Ba, Ca, Co, Mg, Ni, Zn, Sr) photocatalysts,” Theories and Applications of Chemical Engineering, vol. 8, p. 1, 2002. View at Google Scholar
  6. Y. Zhang, C. Liu, G. Pang et al., “Hydrothermal synthesis of a CaNb2O6 hierarchical micro/nanostructure and its enhanced photocatalytic activity,” European Journal of Inorganic Chemistry, no. 8, pp. 1275–1282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. I.-S. Cho, S. T. Bae, D. H. Kim, and K. S. Hong, “Effects of crystal and electronic structures of ANb2O6 (A = Ca, Sr, Ba) metaniobate compounds on their photocatalytic H2 evolution from pure water,” International Journal of Hydrogen Energy, vol. 35, no. 23, pp. 12954–12960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. S. Bhalla, R. Guo, and R. Roy, “The perovskite structure—a review of its role in ceramic science and technology,” Materials Research Innovations, vol. 4, no. 1, pp. 3–26, 2000. View at Google Scholar · View at Scopus
  9. A. Wachtel, “Self-activated luminescence of M2+ niobates and tantalates,” Journal of the Electrochemical Society, vol. 111, no. 5, pp. 534–538, 1964. View at Publisher · View at Google Scholar
  10. A. A. Ballman, S. P. S. Porto, and A. Yariv, “Calcium niobate Ca(NbO3)2—a new laser host crystal,” Journal of Applied Physics, vol. 34, no. 11, pp. 3155–3156, 1963. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Yariv and J. P. Gordon, “The laser,” Proceedings of the IEEE, vol. 51, no. 1, pp. 4–29, 1963. View at Publisher · View at Google Scholar
  12. Y. Saito, H. Takao, T. Tani et al., “Lead-free piezoceramics,” Nature, vol. 432, no. 7013, pp. 84–87, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Guo, K.-I. Kakimoto, and H. Ohsato, “Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics,” Applied Physics Letters, vol. 85, no. 18, pp. 4121–4123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Satapathy and M. V. Ramanna Reddy, “Dielectric and thermal studies of ANb2O6 (A = Ca, Mg, Cu, Ni) for LTCC application,” International Journal of Applied Physics and Mathematics, vol. 3, p. 181, 2011. View at Google Scholar
  15. H. J. Lee, K. S. Kong, and S. J. Kim, “Dielectric properties of MNB2O6 compounds (where M = Ca, Mn, Co, Ni, OR Zn),” Materials Research Bulletin, vol. 32, pp. 847–855, 1999. View at Publisher · View at Google Scholar
  16. D.-W. Kim, H. B. Hong, K. S. Hong, C. K. Kim, and D. J. Kim, “The reversible phase transition and dielectric properties of BaNb2O6 polymorphs,” Japanese Journal of Applied Physics, vol. 41, no. 10, pp. 6045–6048, 2002. View at Google Scholar · View at Scopus
  17. Y.-J. Hsiao, C.-W. Liu, B.-T. Dai, and Y.-H. Chang, “Sol-gel synthesis and the luminescent properties of CaNb2O6 phosphor powders,” Journal of Alloys and Compounds, vol. 475, no. 1-2, pp. 698–701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. N. Singh and P. K. Bajpai, “Synthesis, structural, dielectric and electrical impedance study of CaNb2O6 phase pure material,” Journal of International Academy of Physical Sciences, vol. 14, no. 4, pp. 501–510, 2010. View at Google Scholar
  19. K. C. Patil, “Advanced ceramics: combustion synthesis and properties,” Bulletin of Materials Science, vol. 16, no. 6, pp. 533–541, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Husson, Y. Repelin, N. Q. Dao, and H. Brusset, “Normal coordinate analysis for CaNb2O6 of columbite structure,” The Journal of Chemical Physics, vol. 66, no. 11, pp. 5173–5180, 1977. View at Google Scholar · View at Scopus
  21. F. D. Hardcastle and I. E. Wachs, “Determination of niobium-oxygen bond distances and bond orders by Raman spectroscopy,” Solid State Ionics, vol. 45, no. 3-4, pp. 201–213, 1991. View at Google Scholar · View at Scopus
  22. R. Payling and P. Larkins, Optical Emission Line of Elements, John Wiley & Sons, New York, NY, USA, 1st edition, 2000.