Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2015 (2015), Article ID 834545, 6 pages
http://dx.doi.org/10.1155/2015/834545
Research Article

The Investigation of Field Plate Design in 500 V High Voltage NLDMOS

1State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
2Huahong Grace Semiconductor Manufacturing Corporation, Shanghai 201206, China

Received 21 January 2015; Accepted 15 February 2015

Academic Editor: Rui Zhang

Copyright © 2015 Donghua Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Appels and H. M. J. Vaes, “High voltage thin layer devices (RESURF devices),” in Proceedings of the IEEE International Electron Devices Meeting (IEDM '79), vol. 25, pp. 238–241, 1979. View at Publisher · View at Google Scholar
  2. A. W. Ludikhuize, “A review of RESURF technology,” in Proceedings of the IEEE 12th International Symposium on Power Semiconductor Devices and ICs (ISPSD '00), pp. 11–18, 2000. View at Publisher · View at Google Scholar
  3. D. R. Disney, A. K. Paul, M. Darwish, R. Basecki, and V. Rumennik, “A new 800 V lateral MOSFET with dual conduction paths,” in Proceedings of the 13th International Symposium on Power Semiconductor Devices and ICs (ISPSD '01), pp. 399–402, Osaka, Japan, June 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Qiao, Y. F. Li, X. Zhou, Z. J. Li, and B. Zhang, “A 700- V junction-isolated triple RESURF LDMOS with N-type top layer,” IEEE Electron Device Letters, vol. 35, no. 7, pp. 774–776, 2014. View at Publisher · View at Google Scholar
  5. S. Banerjee, V. Parthasarathy, and M. Manley, “Design of stable 700 V lateral MOSFET for new generation, low-cost off-line SMPS,” in Proceedings of the 22nd International Symposium on Power Semiconductor Devices and IC's (ISPSD '10), pp. 269–272, IEEE, June 2010. View at Scopus
  6. M. Venturato, G. Cantone, F. Ronchi, and F. Toia, “A novel 0.35 μm 800V BCD technology platform for offline applications,” in Proceedings of the 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD '12), pp. 397–400, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Wood, C. Dragon, and W. Burger, “High performance silicon LDMOS technology for 2 GHz RF power amplifier applications,” in Proceedings of the IEEE International Electron Devices Meeting, pp. 87–90, December 1996. View at Scopus
  8. D. C. Burdeaux and W. R. Burger, “Intrinsic reliability of RF power LDMOS FETs,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '11), pp. 435–443, April 2011.
  9. T. Miyoshi, T. Tominari, Y. Hayashi et al., “Reliability improvement in field-MOS FETs with thick gate oxide for 300-V applications,” in Proceedings of the 25th IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD '13), pp. 393–396, 2013. View at Publisher · View at Google Scholar
  10. K. Mao, M. Qiao, L. Jiang et al., “A 0.35 μm 700 v BCD technology with self-isolated and non-isolated ultra-low specific on-resistance DB-nLDMOS,” in Proceedings of the 25th International Symposium on Power Semiconductor Devices and IC's (ISPSD '13), pp. 397–400, Kanazawa, Japan, May 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Hossain, “Determination of manufacturing RESURF process window for a robust 700V double RESURF LDMOS transistor,” in Proceedings of the 20th International Symposium on Power Semiconductor Devices and IC's (ISPSD '08), pp. 133–136, Orlando, Fla, USA, May 2008. View at Publisher · View at Google Scholar · View at Scopus