Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2018, Article ID 8185641, 4 pages
https://doi.org/10.1155/2018/8185641
Research Article

Voltage-Controllable Guided Propagation in Nematic Liquid Crystals

1Department of Ophthalmology, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
2Department of Optometry, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan

Correspondence should be addressed to Shang-Min Yeh; moc.liamg@pay.motpo

Received 27 April 2018; Accepted 28 May 2018; Published 14 June 2018

Academic Editor: Jia-De Lin

Copyright © 2018 Hsin-Yu Yao and Shang-Min Yeh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Voltage-controllable guided channels are formed in a planar nematic liquid crystals cell. The director of liquid crystals can be aligned by applying external voltage, which results in a difference of the refractive index between two adjacent channels; therefore, the incidence beam can be coupled from one channel to another. First, we discussed the propagation of the beam and the self-focusing in a single channel; then we discussed the propagation of the beam and the coupling effect in the two channels. The results showed that the propagation of the beam can be selected in each channel by applying voltages in the two individual electrode channels.

1. Introduction

Optical waveguide elements play an important role in the applications of optical communication, optical signal processing, integrated optical circuits, and optical networking [1, 2]. Many devices have been designed for the split, combine, couple, and phase modulation of the optical signal systems [1, 3]. Controlling the path of the propagating beam is the primary aim of the optical switching system, and the optical signals can be transferred to different guided channels. Somekh et al. proposed the concept of optical waveguide arrays [3], and the potential for optical switching applications has attracted much attention. Haus et al. theoretically predicted that the optical signal switch can be achieved by the external control of the waveguide arrays [4, 5]. Christodoulides et al. predicted the existence of solitary waves in arrays, and such unique properties have developed all-optical signal processing [6]. Gia Russo et al. investigated guided light and found the directional characteristics in the layered crystalline media [7, 8]. Channin et al. studied the waveguide characteristics and discussed the voltage-addressable optical properties in a liquid-crystal medium [9, 10]. Aligned nematic liquid crystals are a good choice for large changes in optical properties, which can be easily driven by applying external voltage. Tsai et al. investigated a multiguided directional coupler based on planar-aligned nematic liquid crystals and discussed the dependence of the coupling effect on the external voltage, the polarization of the incident beam, and the temperature [11, 12].

This work discusses guided light in a single channel and two channels, where the propagation of the beam can be selected in each channel by applying different voltage in the individual electrode channels. In addition, self-focusing and the coupling effect are discussed.

2. Preparation of Sample and Experimental Setup

The nematic liquid crystal (NLC) in this experiment is E7 (ne = 1.7462 and no = 1.5216 at 20°C for λ = 589 nm; nematic phase ranges = −10 to 60.5°C, from Merck). An empty cell is constructed with two indium-tin-oxide (ITO) coated glass plates. One of the two plates is etched with a two-stripe ITO pattern as the upper electrode, and the other plate is used as the grounding electrode. The spacing between the etched region and the nonetched region is 15 μm. These two plates are coated with polyimide film and rubbed parallel to the ITO electrode stripes (z-axis). The glass slides are separated by two 25 μm thick plastic spacers, and the NLCs are injected into the empty cell to form a directional coupler.

Figure 1 presents voltage-controllable guided propagation in a nematic liquid crystals coupler. A linearly polarized (along the x-axis) beam of the 532 nm diode-pump solid-state laser (DPSS) impinges normally onto the side of the sample cell, which is focused on the cross-sectional region of the NLCs medium within the striped electrode of channel 1 using a gradium singlet lens (GRID lens). The focal point is around 3.0 mm from the surface of the side glass, and the focus spot has a diameter of about 3.2 μm. A half-wave plate (λ/2 WP, for 532 nm) and a polarizer are inserted between the DPSS laser and the spatial filter (SF) in order to change the direction of polarization and the intensity of the incident beam. By applying an external voltage on the sample cell, the NLC molecules are reoriented, which results in the distribution of the refractive index in the medium, and the optical channels are formed under a single or two electrode stripes.

Figure 1: Experimental setup of voltage-controllable guided propagation in a nematic liquid crystals coupler.

Guided propagation, self-focusing, and the coupling effect are discussed in three different situations: guided light propagation (I) in a single channel, (II) in two channels by applying equal external voltages in each of the two electrode stripes, and (III) in two channels by applying the different external voltages in each of the two electrode stripes.

3. Results and Discussions

Figure 2 presents a guided light in a single channel by applying various external voltages. A laser beam, which is linearly polarized in the x-direction, is introduced into the channel from the left and propagates along the z-axis. With the applied voltage of = 0 V, the guided light diverges after propagating distance z = 25 μm, as shown in Figure 2(a). Initially, the liquid crystal molecules are horizontally aligned to the z-axis, while the x-direction polarized beam encounters the ordinary uniform refractive index distribution in the medium. With the increased applied voltage of = 1.5 V, the guided light propagates in the channel, as shown in Figure 2(b). The liquid crystal molecules tend to align in the x-axis, while the x-direction polarized beam sees the extraordinary and ordinary refractive index of the liquid crystals in the guided channel and outside the channel, respectively, thus forming a waveguide-like structure. With the applied voltages of = 2.2 V and 3.0 V, the self-focusing of the propagated beam is observed, as shown in Figures 2(c) and 2(d). The liquid crystal molecules around the channel can be reoriented due to the edge effect of the electric field, which forms an approximately gradient distribution of the refractive index around the channel in the medium.

Figure 2: The guided light in a single channel by applying external voltages of (a) 0 V, (b) 1.5 V, (c) 2.2 V, and (d) 3.0 V.

Figure 3 presents the guided light propagation by applying the same external voltages of = 0 V, 1.5 V, 2.2 V, and 2.5 V in the two channels. Initially, the incident beam is introduced into channel 1 with = 0 V, as shown in Figure 3(a). With the applied voltage of = 1.5 V, a part of the guided light gradually trends to channel 2, while part of the guided light still propagates in channel 1, as shown in Figure 3(b). Waveguide-like structures are formed, which results in total reflection in both channel 1 and channel 2. With = 2.2 V and 2.5 V, each of the two beams travels back and forth in the vicinity of its channel, as shown in Figures 3(c) and 3(d). An approximate gradient distribution of the refractive index around the two channels is formed, which results in self-focusing in each channel.

Figure 3: The guided light propagation by applying the same external voltages of (a) 0 V, (b) 1.5 V, (c) 2.2 V, and (d) 2.5 V in the two channels.

Figure 4 presents the guided light propagation by applying fixed voltage (1) = 2.2 V in channel 1 and applying voltage (2) = 0 V, 1.5 V, 2.2 V, and 2.8 V in channel 2, which correspond to Figures 4(a)4(d), respectively. Initially, the incident beam is introduced into channel 1, and self-focusing is observed, as shown in Figure 4(a). At (2) = 1.5 V (i.e., (1) is larger than (2)), a small part of the guided light gradually couples to channel 2, as shown in Figure 4(b). In the condition of (2) = 2.2 V (i.e., (1) is equal to (2)), the coupling effect is clearly observed, and the propagation behavior seems to be the same in both channel 1 and channel 2, as shown in Figure 4(c). At (2) = 2.8 V (i.e., (1) is smaller than (2)), a large part of the guided light gradually couples to channel 2, as shown in Figure 4(d). The results show that the propagation of the incident beam can be easily tuned in channel 1 or in channel 2 due to the distribution of the refractive index when applying external voltage.

Figure 4: The guided light propagation by applying the fixed voltage of (1) = 2.2 V in channel 1 and applying voltages of (2) = 0 V, 1.5 V, 2.2 V, and 2.8 V in channel 2, which correspond to (a)–(d), respectively.

4. Conclusions

In summary, voltage-controllable guided channels are formed in a planar nematic liquid crystals cell. Nematic liquid crystal molecules can be easily reoriented by applying external voltage, which results in the difference of the refractive index between two neighboring channels. Therefore, the incidence beam can be coupled from one channel to another.

First, we discussed the propagation properties of the beam in a single channel. The self-focusing of the light can be observed at = 2.2 V and 3.0 V. Then we discussed the guided light propagation by applying the voltages in the two channels; the beam coupled from one channel to another can be observed. The results show that the propagation of the incident beam can be easily tuned in each of the two channels, due to the distribution formation of the refractive index by applying external voltage.

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was financially supported by Clinical Research grants from Kaohsiung Armed Forces General Hospital, Taiwan (no. 106-17).

References

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley, 2nd edition, 2007.
  2. L. Wang, Y. Wang, and X. Zhang, “Embedded metallic focus grating for silicon nitride waveguide with enhanced coupling and directive radiation,” Optics Express, vol. 20, no. 16, pp. 17509–17521, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional couplers,” Applied Physics Letters, vol. 22, no. 1, pp. 46-47, 1973. View at Publisher · View at Google Scholar · View at Scopus
  4. S. F. Su, L. Jou, and J. Lenart, “A Review on Classification of Optical Switching Systems,” IEEE Communications Magazine, vol. 24, no. 5, pp. 50–55, 1986. View at Publisher · View at Google Scholar · View at Scopus
  5. H. A. Haus and L. Molter-Orr, “Coupled Multiple Waveguide Systems,” IEEE Journal of Quantum Electronics, vol. 19, no. 5, pp. 840–844, 1983. View at Publisher · View at Google Scholar · View at Scopus
  6. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Optics Expresss, vol. 13, no. 9, pp. 794–796, 1988. View at Publisher · View at Google Scholar · View at Scopus
  7. D. P. Gia Russo and J. H. Harris, “Wave propagation in anisotropic thin-film optical waveguides,” Journal of the Optical Society of America, vol. 63, no. 2, pp. 138–145, 1973. View at Publisher · View at Google Scholar · View at Scopus
  8. W. K. Burns and J. Warner, “Mode dispersion in uniaxial optical waveguides*,” Journal of the Optical Society of America, vol. 64, no. 4, p. 441, 1974. View at Publisher · View at Google Scholar
  9. D. J. Channin, “Optical waveguide modulation using nematic liquid crystal,” Applied Physics Letters, vol. 22, no. 8, pp. 365-366, 1973. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Sheridan, J. M. Schnur, and T. G. Giallorenzi, “Electro-optic switching in low-loss liquid-crystal waveguides,” Applied Physics Letters, vol. 22, no. 11, pp. 560-561, 1973. View at Publisher · View at Google Scholar · View at Scopus
  11. M.-S. Tsai, C.-T. Kuo, S.-Y. Huang, C.-C. Shih, and I.-M. Jiang, “Voltage-controlled multiguide directional coupler formed in a planar nematic liquid crystal film,” Applied Physics Letters, vol. 85, no. 6, pp. 855–857, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Kuo, S. Huang, I. Jiang, and M. Tsai, “Multiguide directional coupler using switchable liquid-crystalline optical channels,” Journal of Applied Physics, vol. 97, no. 10, pp. 103–113, 2005. View at Publisher · View at Google Scholar