Table of Contents Author Guidelines Submit a Manuscript
Cellular Oncology
Volume 30, Issue 5, Pages 435-450

Ligands of the Mitochondrial 18 kDa Translocator Protein Attenuate Apoptosis of Human Glioblastoma Cells Exposed to Erucylphosphohomocholine

Wilfried Kugler,1 Leo Veenman,2 Yulia Shandalov,2 Svetlana Leschiner,2 Ilana Spanier,2 Max Lakomek,1 and Moshe Gavish2

1Abteilung Pädiatrie I, Zentrum Kinderheilkunde und Jugendmedizin, Universitätsklinikum Göttingen, D-37075 Göttingen, Germany
2Department of Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa, Israel

Copyright © 2008 Hindawi Publishing Corporation and the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background: We have previously shown that the anti-neoplastic agent erucylphosphohomocholine (ErPC3) requires the mitochondrial 18 kDa Translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor (PBR), to induce cell death via the mitochondrial apoptosis pathway.

Methods: With the aid of the dye JC-1 and cyclosporin A, applied to glioblastoma cells, we now investigated the significance of opening of the mitochondrial permeability transition pore (MPTP) for ErPC3-induced apoptosis in interaction with the TSPO ligands, PK 11195 and Ro5 4864. Furthermore, we measured cytochrome c release, and caspase-9 and -3 activation in this paradigm.

Results: The human glioblastoma cell lines, U87MG, A172 and U118MG express the MPTP-associated TSPO, voltage-dependent anion channel and adenine nucleotide transporter. Indeed, ErPC3-induced apoptosis was inhibited by the MPTP blocker cyclosporin A and by PK 11195 and Ro5 4864 in a concentration-dependent manner. Furthermore, PK 11195 and Ro5 4864 inhibited collapse of the mitochondrial membrane potential, cytochrome c release, and caspase-9 and -3 activation caused by ErPC3 treatment.

Conclusions: This study shows that PK 11195 and Ro5 4864 inhibit the pro-apoptotic function of ErPC3 by blocking its capacity to cause a collapse of the mitochondrial membrane potential. Thus, the TSPO may serve to open the MPTP in response to anti-cancer drugs such as ErPC3.