Table of Contents Author Guidelines Submit a Manuscript
Autoimmune Diseases
Volume 2012 (2012), Article ID 683829, 7 pages
http://dx.doi.org/10.1155/2012/683829
Research Article

Role of Structure-Based Changes due to Somatic Mutation in Highly Homologous DNA-Binding and DNA-Hydrolyzing Autoantibodies Exemplified by A23P Substitution in the VH Domain

1State Research Center for Applied Microbiology and Biotechnology, Serpuhov District Obolensk 142279, Russia
2Institute of Immunological Engineering, Lyubuchany 142380, Russia
3Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia

Received 4 June 2012; Accepted 27 September 2012

Academic Editor: Hiroyuki Nishimura

Copyright © 2012 A. V. Kozyr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. P. Rekvig and J. C. Nossent, “Anti-double-stranded DNA antibodies, nucleosomes, and systemic lupus erythematosus: a time for new paradigms?” Arthritis and Rheumatism, vol. 48, no. 2, pp. 300–312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. van der Vlag and J. H. M. Berden, “Lupus nephritis: role of antinucleosome autoantibodies,” Seminars in Nephrology, vol. 31, no. 4, pp. 376–389, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. E. S. Mortensen, K. A. Fenton, and O. P. Rekvig, “Lupus nephritis: the central role of nucleosomes revealed,” American Journal of Pathology, vol. 172, no. 2, pp. 275–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Shuster, G. V. Gololobov, O. A. Kvashuk, A. E. Bogomolova, I. V. Smirnov, and A. G. Gabibov, “DNA hydrolyzing autoantibodies,” Science, vol. 256, no. 5057, pp. 665–667, 1992. View at Google Scholar · View at Scopus
  5. A. V. Vlassov, O. A. Andrievskaya, T. G. Kanyshkova et al., “RNA-hydrolyzing antibodies from peripheral blood of patients with lupus erythematosus,” Biochemistry, vol. 62, no. 5, pp. 474–479, 1997. View at Google Scholar · View at Scopus
  6. D. Vlahakos, M. H. Foster, A. A. Ucci, K. J. Barrett, S. K. Datta, and M. P. Madaio, “Murine monoclonal anti-DNA antibodies penetrate cells, bind to nuclei, and induce glomerular proliferation and proteinuria in vivo,” Journal of the American Society of Nephrology, vol. 2, no. 8, pp. 1345–1354, 1992. View at Google Scholar · View at Scopus
  7. A. V. Kozyr, L. P. Sashchenko, A. V. Kolesnikov et al., “Anti-DNA autoantibodies reveal toxicity to tumor cell lines,” Immunology Letters, vol. 80, no. 1, pp. 41–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. D. Desai, M. R. Krishnan, J. T. Swindle, and T. N. Marion, “Antigen-specific induction of antibodies against native mammalian DNA in nonautoimmune mice,” Journal of Immunology, vol. 151, no. 3, pp. 1614–1626, 1993. View at Google Scholar · View at Scopus
  9. G. S. Gilkeson, P. Ruiz, D. Howell, J. B. Lefkowith, and D. S. Pisetsky, “Induction of immune-mediated glomerulonephritis in normal mice immunized with bacterial DNA,” Clinical Immunology and Immunopathology, vol. 68, no. 3, pp. 283–292, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. H. L. Wun, D. T. M. Leung, K. C. Wong, Y. L. Chui, and P. L. Lim, “Molecular mimicry: anti-DNA antibodies may arise inadvertently as a response to antibodies generated to microorganisms,” International Immunology, vol. 13, no. 9, pp. 1099–1107, 2001. View at Google Scholar · View at Scopus
  11. J. N. Herron, X. M. He, D. W. Ballard et al., “An autoantibody to single-stranded DNA: comparison of the three-dimensional structures of the unliganded Fab and a deoxynucleotide-Fab complex,” Proteins, vol. 11, no. 3, pp. 159–175, 1991. View at Google Scholar · View at Scopus
  12. G. V. Gololobov, C. A. Rumbley, J. N. Rumbley et al., “DNA hydrolysis by monoclonal anti-ssDNA autoantibody BV 04-01: origins of catalytic activity,” Molecular Immunology, vol. 34, no. 15, pp. 1083–1093, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Kofler, R. Strohal, R. S. Balderas et al., “Immunoglobulin κ light chain variable region gene complex organization and immunoglobulin genes encoding anti-DNA autoantibodies in lupus mice,” Journal of Clinical Investigation, vol. 82, no. 3, pp. 852–860, 1988. View at Google Scholar · View at Scopus
  14. C. A. Rumbley, L. K. Denzin, L. Yantz, S. Y. Tetin, and E. W. Voss, “Construction, characterization, and selected site-specific mutagenesis of an anti-single-stranded DNA single-chain autoantibody,” Journal of Biological Chemistry, vol. 268, no. 18, pp. 13667–13674, 1993. View at Google Scholar · View at Scopus
  15. S. M. Kipriyanov, “High-level periplasmic expression and purification of scFvs,” Methods in Molecular Biology, vol. 562, pp. 205–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. H. Andreotti, “Native state proline isomerization: an intrinsic molecular switch,” Biochemistry, vol. 42, no. 32, pp. 9515–9524, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Feige, S. Groscurth, M. Marcinowski et al., “An unfolded CH1 domain controls the assembly and secretion of IgG antibodies,” Molecular Cell, vol. 34, no. 5, pp. 569–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Morea, A. Tramontano, M. Rustici, C. Chothia, and A. M. Lesk, “Conformations of the third hypervariable region in the VH domain of immunoglobulins,” Journal of Molecular Biology, vol. 275, no. 2, pp. 269–294, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Luo, G. Obmolova, A. Huang et al., “Coevolution of antibody stability and Vκ CDR-L3 canonical structure,” Journal of Molecular Biology, vol. 402, no. 4, pp. 708–719, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Clark, S. Ganesan, S. Papp, and H. W. T. Van Vlijmen, “Trends in antibody sequence changes during the somatic hypermutation process,” Journal of Immunology, vol. 177, no. 1, pp. 333–340, 2006. View at Google Scholar · View at Scopus
  21. U. Wellmann, M. Letz, M. Herrmann, S. Angermüller, J. R. Kalden, and T. H. Winkler, “The evolution of human anti-double-stranded DNA autoantibodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 26, pp. 9258–9263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Z. Radic, J. Mackle, J. Erikson, C. Mol, W. F. Anderson, and M. Weigert, “Residues that mediate DNA binding of autoimmune antibodies,” Journal of Immunology, vol. 150, no. 11, pp. 4966–4977, 1993. View at Google Scholar · View at Scopus
  23. J. Zhang, A. M. Jacobi, T. Wang, and B. Diamond, “Pathogenic autoantibodies in systemic lupus erythematosus are derived from both self-reactive and non-self-reactive B cells,” Molecular Medicine, vol. 14, no. 11-12, pp. 675–681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Putterman, W. Limpanasithikul, M. Edelman, and B. Diamond, “The double edged sword of the immune response: mutational analysis of a murine anti-pneumococcal, anti-DNA antibody,” Journal of Clinical Investigation, vol. 97, no. 10, pp. 2251–2259, 1996. View at Google Scholar · View at Scopus
  25. A. J. Manheimer-Lory, G. Zandman-Goddard, A. Davidson, C. Aranow, and B. Diamond, “Lupus-specific antibodies reveal an altered pattern of somatic mutation,” Journal of Clinical Investigation, vol. 100, no. 10, pp. 2538–2546, 1997. View at Google Scholar · View at Scopus
  26. Y. R. Kim, J. S. Kim, S. H. Lee et al., “Heavy and light chain variable single domains of an anti-DNA binding antibody hydrolyze both double- and single-stranded DNAs without sequence specificity,” Journal of Biological Chemistry, vol. 281, no. 22, pp. 15287–15295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. H. S. Zein, J. A. T. da Silva, and K. Miyatake, “Monoclonal antibodies specific to Cucumber mosaic virus coat protein possess DNA-hydrolyzing activity,” Molecular Immunology, vol. 46, no. 7, pp. 1527–1533, 2009. View at Publisher · View at Google Scholar · View at Scopus