Table of Contents Author Guidelines Submit a Manuscript
Autoimmune Diseases
Volume 2013, Article ID 593493, 13 pages
http://dx.doi.org/10.1155/2013/593493
Research Article

Lower Serum Androstenedione Levels in Pre-Rheumatoid Arthritis versus Normal Control Women: Correlations with Lower Serum Cortisol Levels

1Department of Medicine, University of Illinois College of Medicine (UICOMP), One Illini Drive, Peoria, IL 61656, USA
2University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
3Northwestern University (NWU), Feinberg School of Medicine, Chicago, IL 60611, USA

Received 28 February 2013; Accepted 23 April 2013

Academic Editor: Daniela Melchiorre

Copyright © 2013 Alfonse T. Masi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. T. Masi and G. P. Chrousos, “Hypothalamic-pituitary-adrenal-glucocorticoid axis function in rheumatoid arthritis,” The Journal of Rheumatology, vol. 23, no. 4, pp. 577–581, 1996. View at Google Scholar · View at Scopus
  2. R. L. Wilder, “Adrenal and gonadal steroid hormone deficiency in the pathogenesis of rheumatoid arthritis,” The Journal of Rheumatology, vol. 44, pp. 10–12, 1996. View at Google Scholar
  3. R. L. Wilder and I. J. Elenkov, “Hormonal regulation of tumor necrosis factor-α, interleukin-12 and interleukin-10 production by activated macrophages. A disease-modifying mechanism in rheumatoid arthritis and systemic lupus erythematosus?” Annals of the New York Academy of Sciences, vol. 876, pp. 14–31, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. K. S. Kanik, G. P. Chrousos, H. R. Schumacher, M. L. Crane, C. H. Yarboro, and R. L. Wilder, “Adrenocorticotropin, glucocorticoid, and androgen secretion in patients with new onset synovitis/rheumatoid arthritis: relations with indices of inflammation,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 4, pp. 1461–1466, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Cutolo, L. Foppiani, and F. Minuto, “Hypothalamic-pituitary-adrenal axis impairment in the pathogenesis of rheumatoid arthritis and polymyalgia rheumatica,” Journal of endocrinological investigation, vol. 25, no. 10, pp. 19–23, 2002. View at Google Scholar · View at Scopus
  6. R. H. Straub, L. Paimela, R. Peltomaa, J. Schölmerich, and M. Leirisalo-Repo, “Inadequately low serum levels of steroid hormones in relation to interleukin-6 and tumor necrosis factor in untreated patients with early rheumatoid arthritis and reactive arthritis,” Arthritis and Rheumatism, vol. 46, no. 3, pp. 654–662, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. T. Masi, J. C. Aldag, and R. T. Chatterton, “Sex hormones and risks of rheumatoid arthritis and developmental or environmental influences,” Annals of the New York Academy of Sciences, vol. 1069, pp. 223–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Imrich, M. Vigas, J. Rovensky, J. C. Aldag, and A. T. Masi, “Adrenal plasma steroid relations in glucocorticoidnaïve premenopausal rheumatoid arthritis patients during insulin-induced hypoglycemia test compared to matched normal control females,” Endocrine Regulations, vol. 43, no. 2, pp. 65–73, 2009. View at Google Scholar · View at Scopus
  9. A. T. Masi, “Incidence of rheumatoid arthritis: do the observed age-sex interaction patterns support a role of androgenic-anabolic steroid deficiency in its pathogenesis?” British Journal of Rheumatology, vol. 33, no. 8, pp. 697–699, 1994. View at Google Scholar · View at Scopus
  10. M. Pikwer, U. Bergström, J. A. Nilsson, L. Jacobsson, and C. Turesson, “Early menopause is an independent predictor of rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 71, no. 3, pp. 378–381, 2012. View at Publisher · View at Google Scholar
  11. A. T. Masi, D. B. Josipovic, and W. E. Jefferson, “Low adrenal androgenic-anabolic steroids in women with rheumatoid arthritis (RA): gas-liquid chromatographic studies of RA patients and matched normal control women indicating decreased 11-deoxy-17-ketosteroid excretion,” Seminars in Arthritis and Rheumatism, vol. 14, no. 1, pp. 1–23, 1984. View at Google Scholar · View at Scopus
  12. L. Foppiani, M. Cutolo, P. Sessarego et al., “Desmopressin and low-dose ACTH test in rheumatoid arthritis,” European Journal of Endocrinology, vol. 138, no. 3, pp. 294–301, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Cutolo, L. Foppiani, C. Prete et al., “Hypothalamic-pituitary-adrenocortical axis function in premenopausal women with rheumatoid arthritis not treated with glucocorticoids,” The Journal of Rheumatology, vol. 26, no. 2, pp. 282–288, 1999. View at Google Scholar · View at Scopus
  14. A. T. Masi, R. T. Chatterton, Y. C. Lu et al., “Low serum dehydroepiandrosterone sulfate (DHAS) levels, rheumatoid factor (RF) and elevated serum tumor necrosis factor α (TNFα) without cytokine receptor (CK) elevations predict long-term onset of RA in women: a controlled, prospective study,” Arthritis & Rheumatism, vol. 38, p. 214, 1995. View at Google Scholar
  15. A. T. Masi, K. B. Elmore, A. A. Rehman, J. C. Aldag, and R. T. Chatterton, “Pre-rheumatoid arthritis (pre-RA) subjects had a minority excess with clearly low serum cortisol levels and females had a lower mean androstenedione levels than control (CN) cohorts in analysis of a large panel of serum steroids and pituitary hormones,” Arthritis & Rheumatism, vol. 64, p. S27, 2012. View at Google Scholar
  16. A. T. Masi, A. A. Rehman, K. B. Elmore, and J. C. Aldag, “Serum acute phase protein and inflammatory cytokine network correlations: comparison of a pre-rheumatoid arthritis and non-rheumatoid arthritis community cohort,” Journal of Innate Immunity, vol. 5, no. 2, pp. 100–113, 2013. View at Publisher · View at Google Scholar
  17. N. C. Vamvakopoulos and G. P. Chrousos, “Hormonal regulation of human corticotropin-releasing hormone gene expression: implications for the stress response and immune/inflammatory reaction,” Endocrine Reviews, vol. 15, no. 4, pp. 409–420, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. C. R. Parker, R. L. Mixon, R. M. Brissie, and W. E. Grizzle, “Aging alters zonation in the adrenal cortex of men,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 11, pp. 3898–3901, 1997. View at Google Scholar · View at Scopus
  19. K. J. Helzlsouer, A. J. Alberg, G. B. Gordon et al., “Serum gonadotropins and steroid hormones and the development of ovarian cancer,” Journal of the American Medical Association, vol. 274, pp. 1926–1930, 1995. View at Google Scholar
  20. N. Rothman, K. P. Cantor, A. Blair et al., “A nested case-control study of non-Hodgkin lymphoma and serum organochlorine residues,” The Lancet, vol. 350, no. 9073, pp. 240–244, 1997. View at Publisher · View at Google Scholar
  21. A. J. Alberg, G. B. Gordon, S. C. Hoffman, G. W. Comstock, and K. J. Helzlsouer, “Serum dehydroepiandrosterone and dehydroepiandrosterone sulfate and the subsequent risk of developing colon cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 5, pp. 517–521, 2000. View at Google Scholar · View at Scopus
  22. D. M. Gerlag, K. Raza, L. G. van Baarsen et al., “EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis,” Annals of the Rheumatic Diseases, vol. 71, no. 5, pp. 638–641, 2012. View at Publisher · View at Google Scholar
  23. F. C. Arnett, S. M. Edworthy, D. A. Bloch et al., “The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis,” Arthritis & Rheumatism, vol. 31, no. 3, pp. 315–324, 1988. View at Publisher · View at Google Scholar
  24. K. T. Jørgensen, A. Wiik, M. Pedersen et al., “Cytokines, autoantibodies and viral antibodies in premorbid and postdiagnostic sera from patients with rheumatoid arthritis: case-control study nested in a cohort of Norwegian blood donors,” Annals of the Rheumatic Diseases, vol. 67, no. 6, pp. 860–866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. T. Masi, S. L. Feigenbaum, and R. T. Chatterton, “Hormonal and pregnancy relationships to rheumatoid arthritis: convergent effects with immunologic and microvascular systems,” Seminars in Arthritis and Rheumatism, vol. 25, no. 1, pp. 1–27, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. W. J. Dixon and J. W. Tukey, “Approximate behavior of the distribution of Winsorized t (Trimming/Winsorization 2),” Technometrics, vol. 10, no. 1, pp. 83–98, 1968. View at Google Scholar
  27. K. J. Rothman, “No adjustments are needed for multiple comparisons,” Epidemiology, vol. 1, no. 1, pp. 43–46, 1990. View at Google Scholar · View at Scopus
  28. M. Cutolo, E. Balleari, M. Giusti, M. Monachesi, and S. Accardo, “Sex hormone status of male patients with rheumatoid arthritis: evidence of low serum concentrations of testosterone at baseline and after human chorionic gonadotropin stimulation,” Arthritis and Rheumatism, vol. 31, no. 10, pp. 1314–1317, 1988. View at Google Scholar · View at Scopus
  29. A. T. Masi, J. A. P. Da Silva, and M. Cutolo, “Perturbations of hypothalamic-pituitary-gonadal (HPG) axis and adrenal androgen (AA) functions in rheumatoid arthritis,” Bailliere's Clinical Rheumatology, vol. 10, no. 2, pp. 295–332, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. A. T. Masi, R. T. Chatterton, and J. C. Aldag, “Perturbations of hypothalamic-pituitary-gonadal axis and adrenal androgen functions in rheumatoid arthritis: an odyssey of hormonal relationships to the disease,” Annals of the New York Academy of Sciences, vol. 876, pp. 53–63, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Härle, G. Pongratz, C. Weidler, R. Büttner, J. Schölmerich, and R. H. Straub, “Possible role of leptin in hypoandrogenicity in patients with systemic lupus erythematosus and rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 63, no. 7, pp. 809–816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Imrich, M. Vlcek, J. C. Aldag et al., “An endocrinologist's view on relative adrenocortical insufficiency in rheumatoid arthritis: annals of the New York Academy of Sciences,” Annals of the New York Academy of Sciences, vol. 1193, pp. 134–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. Gutiérrez, M. E. García, J. A. Rodriguez et al., “Hypothalamic-pituitary-adrenal axis function in patients with active rheumatoid arthritis: a controlled study using insulin hypoglycemia stress test and prolactin stimulation,” The Journal of Rheumatology, vol. 26, pp. 277–281, 1999. View at Google Scholar
  34. J. Hall, E. F. Morand, S. Medbak et al., “Abnormal hypothalamic-pituitary-adrenal axis function in rheumatoid arthritis: effects of nonsteroidal antiinflammatory drugs and water immersion,” Arthritis and Rheumatism, vol. 37, no. 8, pp. 1132–1137, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Jorgensen, N. Bressot, C. Bologna, and J. Sany, “Dysregulation of the hypothalamo-pituitary axis in rheumatoid arthritis,” The Journal of Rheumatology, vol. 22, no. 10, pp. 1829–1833, 1995. View at Google Scholar · View at Scopus
  36. B. Gudbjörnsson, B. Skogseid, K. Öberg, L. Wide, and R. Hällgren, “Intact adrenocorticotropic hormone secretion but impaired cortisol response in patients with active rheumatoid arthritis. Effect of glucocorticoids,” The Journal of Rheumatology, vol. 23, no. 4, pp. 596–602, 1996. View at Google Scholar · View at Scopus
  37. E. Templ, M. Koeller, M. Riedl, O. Wagner, W. Graninger, and A. Luger, “Anterior pituitary function in patients with newly diagnosed rheumatoid arthritis,” British Journal of Rheumatology, vol. 35, no. 4, pp. 350–356, 1996. View at Google Scholar · View at Scopus
  38. L. J. Crofford, K. T. Kalogeras, G. Mastorakos et al., “Circadian relationships between interleukin (IL)-6 and hypothalamic- pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 4, pp. 1279–1283, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. A. M. M. Eijsbouts, F. H. J. van den Hoogen, R. F. J. M. Laan, A. R. M. M. Hermus, F. C. G. J. Sweep, and L. B. A. van de Putte, “Hypothalamic-pituitary-adrenal axis activity in patients with rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 23, no. 5, pp. 658–664, 2005. View at Google Scholar · View at Scopus
  40. C. C. Chen and C. R. Parker Jr., “Adrenal androgens and the immune system,” Seminars in Reproductive Medicine, vol. 22, no. 4, pp. 369–377, 2004. View at Publisher · View at Google Scholar
  41. P. J. Hornsby, “Aging of the human adrenal cortex,” Science of Aging Knowledge Environment, vol. 2004, no. 35, p. re6, 2004. View at Google Scholar · View at Scopus
  42. Y. Nakamura, H. X. Gang, T. Suzuki, H. Sasano, and W. E. Rainey, “Adrenal changes associated with adrenarche,” Reviews in Endocrine and Metabolic Disorders, vol. 10, no. 1, pp. 19–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. P. J. Hornsby, “Adrenarche: a cell biological perspective,” Journal of Endocrinology, vol. 214, pp. 113–119, 2012. View at Publisher · View at Google Scholar
  44. W. L. Miller, “The syndrome of 17, 20 lyase deficiency,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 1, pp. 59–67, 2012. View at Publisher · View at Google Scholar
  45. W. L. Miller, “P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations,” Science Signaling, vol. 23, no. 254, p. pt11, 2012. View at Publisher · View at Google Scholar