Table of Contents
Advances in Decision Sciences
Volume 2012, Article ID 428060, 11 pages
http://dx.doi.org/10.1155/2012/428060
Research Article

Virtual Commissioning of an Assembly Cell with Cooperating Robots

Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and Aeronautics, University of Patras, 26500 Rio, Greece

Received 1 March 2012; Revised 8 July 2012; Accepted 25 August 2012

Academic Editor: Fumihiko Kimura

Copyright © 2012 S. Makris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. K. Choi and B. H. Kim, “New trends in CIM: virtual manufacturing systems for next generation manufacturing,” in Proceedings of the Current Advances in Mechanical Design and Production Seventh Cairo University International MDP Conference, pp. 425–436, Cairo, Egypt, 2000.
  2. T. Bär, “Flexibility demands on automotive production and their effects on virtual production planning,” in Proceedings of the 2nd CIRP Conference on Assembly Technologies and Systems, pp. 16–28, 2008.
  3. E. Westkmper, “Strategic development of factories under the influence of emergent technologies,” CIRP Annals, vol. 56, no. 1, pp. 419–422, 2007. View at Google Scholar
  4. H. Bley and C. Franke, “Integration of product design and assembly planning in the digital factory,” CIRP Annals, vol. 53, no. 1, pp. 25–30, 2004. View at Google Scholar
  5. S. Makris, G. Michalos, K. Efthymiou et al., “Flexible assembly technology for highly customisable vehicles,” in International Conference Competitive and Sustainable Manufacturing, Products and Services (APMS '10), Como, Italy, 2010.
  6. R. Drath, P. Weber, and N. Mauser, “An evolutionary approach for the industrial introduction of virtual commissioning,” in IEEE International Conference on Emerging Technologies and Factory Automation (ETFA '08), pp. 5–8, 2008.
  7. F. Auinger, M. Vorderwinkler, and G. Buchtela, “Interface driven domain-independent modeling architecture for “soft-commissioning” and “reality in the loop”,” in Proceedings of the Winter Simulation Conference, vol. 1, pp. 798–805, Phoenix, Ariz, USA, 1999.
  8. J. Kiefer, Mechatronikorientierte Planung automatisierter Fertigungszellen im Bereich Karosseriebau [Dissertation], Universitat des Saarlandes, 2007, Schriftenreihe Produktionstechnik Band 43.
  9. Verein Deutscher Ingenieure (Hrsg), VDI-Richtlinie 3633, Blatt 8 (Entwurf): Simulation von Logistik-, Materialfluss- und Produktionssystemen Maschinennahe Simulation, VDI-Verlag, Düsseldorf, 2005.
  10. G. Reinhart and G. Wnsch, “Economic application of virtual commissioning to mechatronic production systems,” Production Engineering. Research and Development, vol. 1, no. 4, pp. 371–379, 2007. View at Google Scholar
  11. M. Spitzweg, Methode und Konzept fur den Einsatz eines physikalischen Modells in der Entwicklung von Produktionsanlagen (Method and concept for the approach of a physics model to the development of production lines) [Ph.D. thesis], Technische Universitat Munchen, 2009.
  12. S. Kain, F. Schiller, and T. Frank, “Monitoring and diagnostics of hybrid automation systems based on synchronous simulation,” in Proceedings of the 8th IEEE International Conference of Industrial Informatics (INDIN '10), pp. 260–265, 2010.
  13. S. Dominka, F. Schiller, and S. Kain, “Hybrid commissioning—from Hardware-in-the-Loop simulation to real production plants,” in Proceedings of the 18th IASTED International Conference on Modeling and Simulation (MS '07), pp. 544–549, Montreal, Canada, 2007.
  14. S. Kain, S. Dominka, M. Merz, and F. Schiller, “Reuse of hiL simulation Models in the operation phase of production plants,” in Proceedings of the IEEE International Conference on Industrial Technology (ICIT '09), pp. 1–6, Victoria, Australia, 2009.
  15. Tecnomatix, http://www.plm.automation.siemens.com/en_gb/products/tecnomatix/assembly_planning/process_simulate/commissioning.shtml.
  16. WINMOD, http://winmod.de/de/index.php?page=virtuelle-maschine-anlage.
  17. M. Bergert, J. Kiefer, S. Hoeme, and C. Fedrowitz, “Einsatz der Virtuellen Inbetriebnahme im automobilen Karosseriebau Ein Erfahrungsbericht,” in Tagungband Der 9, Magdeburger Maschinenbau-Tage, pp. 388–397, 2009. View at Google Scholar
  18. G. P. Ranky, “Collaborative, synchronous robots serving machines and cells,” Industrial Robot, vol. 30, no. 3, pp. 213–217, 2003. View at Google Scholar
  19. R. Koeppe et al., “Robot robot and human robot cooperation in commercial robotics applications,” Robotics Research, vol. 15, pp. 202–216, 2005. View at Google Scholar
  20. N. Papakostas, G. Michalos, S. Makris, D. Zouzias, and G. Chryssolouris, “Industrial applications with cooperating robots for the flexible assembly,” International Journal of Computer Integrated Manufacturing, vol. 24, no. 7, pp. 650–660, 2011. View at Google Scholar
  21. M. F. Zäh, G. Wünsch, C. Pörnbacher, and M. Ehrenstrasser, “Emerging virtual machine Tools,” in proceedings of the 29th Design Automation Conference (ASME DETC '03), Chicago, Ill, USA, 2003.
  22. AutomationML, http://www.automationml.org/o.red.c/home.html.